[1] 巩梦婷, 韦荃, 杨娟等. 馆藏张大千临摹敦煌壁画的历
史与现状研究[J]. 中国文物科学研究, 2024, (01): 60-69.
Gong M T, Wei Q, Yang J, et al. Research on the History
and Current Situation of Zhang Daqian’s Copies of
Dunhuang Murals in Museum Collections [J]. China
Cultural Relics Science Research, 2024, (01): 60-69.
[2] 徐成, 孙吉武, 王石磊等. 文物壁画的智能数字化修复
研究[C]//中国计算机用户协会网络应用分会. 2023:
438-441.
Xu C, Sun J W, Wang S L, et al. Research on Intelligent
Digital Restoration of Cultural Relic Murals [C]//China
Computer Users Association Network Application Branch,
2023: 438-441.
[3] Suin M, Purohit K, Rajagopalan A N. Distillation-guided
image inpainting[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021:
2481-2490.
[4] Yu T, Guo Z, Jin X, et al. Region normalization for image
inpainting[C]//Proceedings of the AAAI conference on
artificial intelligence. 2020, 34(07): 12733-12740.
[5] Sargsyan A, Navasardyan S, Xu X, et al. Mi-gan: A simple
baseline for image inpainting on mobile
devices[C]//Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2023: 7335-7345.
[6] Peng J, Liu D, Xu S, et al. Generating diverse structure for
image inpainting with hierarchical
VQ-VAE[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2021:
10775-10784.
[7] Yu F, Koltun V. Multi-scale context aggregation by dilated
convolutions[J]. arxiv preprint arxiv:1511.07122, 2015.
[8] Karras T, Laine S, Aittala M, et al. Analyzing and
improving the image quality of stylegan[C]//Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition. 2020: 8110-8119.
[9] Li W, Lin Z, Zhou K, et al. Mat: Mask-aware transformer
for large hole image inpainting[C]//Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2022: 10758-10768.
[10] Chen S, Atapour-Abarghouei A, Zhang H, et al. MxT:
Mamba x Transformer for Image Inpainting[J]. arXiv
preprint arXiv:2407.16126, 2024.
[11] Chen S, Atapour-Abarghouei A, Shum H P H. HINT:
High-quality INpainting Transformer with Mask-Aware
Encoding and Enhanced Attention[J]. IEEE Transactions
on Multimedia, 2024.
[12] Atapour-Abarghouei A, de La Garanderie G P, Breckon T
P. Back to butterworth-a fourier basis for 3d surface relief
hole filling within rgb-d imagery[C]//2016 23rd
International Conference on Pattern Recognition (ICPR).
IEEE, 2016: 2813-2818.
[13] Chen S, Atapour-Abarghouei A, Ho E S L, et al. INCLG:
Inpainting for non-cleft lip generation with a multi-task
image pro cessing network[J]. Software Impacts, 2023, 17:
100517.
[14] Cao C, Fu Y. Learning a sketch tensor space for image
inpainting of man-made scenes[C]//Proceedings of the
IEEE/CVF international conference on computer vision.
2021: 14509-14518.
[15] Zheng H, Lin Z, Lu J, et al. Image inpainting with
cascaded modulation gan and object-aware
training[C]//European Conference on Computer Vision.
Cham: Springer Nature Switzerland, 2022: 277-296.
[16] 徐志刚, 杨欣宇. 结合 CSWin-Transformer 和门卷积的
壁画图像修复方法[J]. 计算机工程与应用, 2024, 60(21):
215-224.
Xu Z G, Yang X Y. Mural Image Restoration Method
Combining CSWin-Transformer and Gated Convolution
[J]. Computer Engineering and Applications, 2024, 60(21):
215-224. [17] 严杰. 基于改进 Swin Transformer 的壁画修复算法[J].
现代计算机, 2024, 30(22): 42-48.
Yan J. Mural Restoration Algorithm Based on Improved
Swin Transformer [J]. Modern Computer, 2024, 30(22):
42-48.
[18] Zhang Y, Cao Y, Lin Y, et al. Dunhuang Art Style Transfer
via Hierarchical Vision Transformer and Color
Consistency Constraints[J]. IEEE Transactions on
Consumer Electronics, 2025.
[19] Yang J, Ruhaiyem N I R, Zhou C. A 3M-Hybrid Model for
the Restoration of Unique Giant Murals: A Case Study on
the Murals of Yongle Palace[J]. IEEE Access, 2025.
[20] Yu J, Lin Z, Yang J, et al. Generative image inpainting
with contextual attention[C]//Proceedings of the IEEE
conference on computer vision and pattern recognition.
2018: 5505-5514.
[21] Zheng C, Cham T J, Cai J, et al. Bridging global context
interactions for high-fidelity image
completion[C]//Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2022:
11512-11522.
[22] Gatys L A, Ecker A S, Bethge M. Image style transfer
using convolutional neural networks[C]//Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2016: 2414-2423.
[23] Johnson J, Alahi A, Fei-Fei L. Perceptual losses for
real-time style transfer and super-resolution[C]//Computer
Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14. Springer International Publishing,
2016: 694-711.
[24] Oikarinen T, Zhang W, Megretski A, et al. Robust deep
reinforcement learning through adversarial loss[J].
Advances in Neural Information Processing Systems,
2021, 34: 26156-26167.
[25] Yu T, Zhang S, Lin C, et al. Dunhuang grottoes painting
dataset and benchmark[J]. arxiv preprint arxiv:1907.04589,
2019.
[26] Wang Z, Bovik A C, Sheikh H R, et al. Image quality
assessment: from error visibility to structural similarity[J].
IEEE transactions on image processing, 2004, 13(4):
600-612.
[27] Zhang R, Isola P, Efros A A, et al. The unreasonable
effectiveness of deep features as a perceptual
metric[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018: 586-595.
[28] Hui Z, Li J, Wang X, et al. Image fine-grained
inpainting[J]. arXiv preprint arXiv:2002.02609, 2020.
[29] Li X, Guo Q, Lin D, et al. Misf: Multi-level interactive
siamese filtering for high-fidelity image
inpainting[C]//Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2022:
1869-1878.
[30] Quan W, Zhang R, Zhang Y, et al. Image inpainting with
local and global refinement[J]. IEEE Transactions on
Image Processing, 2022, 31: 2405-2420.
[31] Guo X, Yang H, Huang D. Image inpainting via
conditional texture and structure dual
generation[C]//Proceedings of the IEEE/CVF international
conference on computer vision. 2021: 14134-14143
|