[1] TIAN Q, SUN H, MA C, et al. Heterogeneous domain
adaptation with structure and classification space
alignment[J]. IEEE Transactions on Cybernetics, 2021,
52(10): 10328-10338.
[2] FARAHANI A, VOGHOEI S, RASHEED K, et al. A brief
review of domain adaptation[J]. Advances in Data Science
and Information Engineering: proceedings from ICDATA
2020 and IKE 2020, 2021: 877-894.
[3] PANAREDA B P, GALL J. Open set domainadaptation[C]//Proceedings of the IEEE International
Conference on Computer Vision. 2017: 754-763.
[4] 刘星宏, 周毅, 周涛, 等. 基于自步学习的开放集领域自
适应[J]. 计算机研究与发展, 2023, 60(8): 1711-1726.
LIU X, ZHOU Y, ZHOU T, et al. Self-Paced learning for
open-set domain adaptation[J]. Journal of Computer
Research and Development, 2023, 60(8): 1711-1726.
[5] ZHANG R, WEI J, LU X, et al. Self-supervised domain
exploration with an optimal transport regularization for
open set cross-domain speech emotion
recognition[C]//International Conference on Acoustics
Speech and Signal Processing (ICASSP). New York:
IEEE, 2024: 10466-10470.
[6] 罗浩,王彦捷,牛明航,邱存月,张利. 动态区间的加
权模糊聚类算法[J]. 计算机科学与探索, 2020, 14(7):
1142-1153.
LUO Hao, WANG Yanjie, NIU Minghang, QIU Cunyue,
ZHANG Li. Weighted fuzzy clustering algorithm based
on dynamic interval[J]. Journal of Frontiers of Computer
Science and Technology, 2020, 14(7): 1142-1153.
[7] 王少将, 刘佳, 郑锋, 等. 机器学习层谱聚类综述[J]. 计算
机科学, 2023, 50(1): 9-17.
WANG S J, LIU J, ZHENG F, et,al. Survey on
hierarchical clustering for machine learning[J]. Computer
Science, 2023, 50(1): 9-17.
[8] 张永, 夏天琦, 黄丹. 基于无监督域适应的可区分联合匹
配算法[J]. 模式识别与人工智能, 2021,34(10): 932-940.
ZHANG Y, XIA T Q, HUANG D. Discriminative joint
matching for unsupervised domain adaptation. Pattern
Recognition and Artificial Intelligence, 2021, 34(10): 932-
940.
[9] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial
discriminative domain adaptation[C]//Proceedings of the
IEEE conference on computer vision and pattern
recognition. New York: IEEE, 2017: 7167-7176.
[10] KANG G, Zheng L, YAN Y, et al. Deep adversarial
attention alignment for unsupervised domain adaptation:
the benefit of target expectation
maximization[C]//Proceedings of the European
conference on computer vision. New York: IEEE, 2018:
401-416.
[11] CHOE J, SHIM H. Attention-based dropout layer for
weakly supervised object localization[C]//Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition. New York: IEEE, 2019: 2219-2228.
[12] FENG Y, ZHU H, PENG D, et al. ROAD: Robust
Unsupervised Domain Adaptation with Noisy
Labels[C]//Proceedings of the 31st ACM International
Conference on Multimedia. 2023: 7264-7273.
[13] SCHEIRER W, ROCHA A, SAPKOTA A, BOULT T E.
Toward open set recognition[J]. IEEE transactions on
pattern analysis and machine intelligence, 2012: 35(7),
1757-1772.
[14] SATIO K, YAMAMOTO S, USHIKU Y, et al. Open set
domain adaptation by backpropagation[C]//Proceedings of
the IEEE conference on computer vision and pattern
recognition. New York: IEEE, 2018: 153-169.
[15] ZOU Y, YU Z, LIU X, et al. Confidence regularized selftraining[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. New York: IEEE,
2019: 5982-5991.
[16] PAN Y, YAO T, LI Y, et al. Transferrable prototypical
networks for unsupervised domain
adaptation[C]//Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. New York:
IEEE, 2019: 2239-2247.
[17] GAO F., PI D, CHEN J. Balanced and robust unsupervised
Open Set Domain Adaptation via joint adversarial
alignment and unknown class isolation[J]. Expert Systems
with Applications, 2024, 238, p.122127.
[18] COURTY N, FLAMARY R, TUIA D, et al. Optimal
transport for domain adaptation[J]. IEEE transactions on
pattern analysis and machine intelligence, 2016, 39(9):
1853-1865.
[19] LI H Q, KIM Y, KUO C H, et al. Acted vs. Improvised:
Domain Adaptation for Elicitation Approaches in Audio-Visual Emotion Recognition[C]//Interspeech. ISCA, 2021:
3395–3399.
[20] NICOLAS C, REMI F, AMAURY H, et al. Joint
distribution optimal transportation for domain
adaptation[C]//Proc. NIPS. New York: Neural Information
Processing Systems Foundation, 2017: 30
[21] ZHANG R, Wei J, Lu X, et al. Optimal transport with a
diversified memory bank for cross-domain speaker
verification[C]//International Conference on Acoustics
Speech and Signal Processing (ICASSP). New York:
IEEE, 2023: 1–5.
[22] FERDOUS R. An efficient k-means algorithm integrated
with Jaccard distance measure for document
clustering[C]//2009 first asian himalayas international
conference on internet. New York: IEEE, 2009: 1-6.
[23] SAENKO K, KULIS B, FRITZ M, et al. Adapting visual
category models to new domains[C]//Computer Vision–
ECCV 2010: 11th European Conference on Computer
Vision. Berlin: Springer, 2010: 213-226.
[24] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S,
et al. Deep hashing network for unsupervised domain
adaptation[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. New York: IEEE,
2017: 5018-5027.
[25] PENG X, USMAN B, KAUSHIK N, et al. VisDA-2017: A
synthetic-to-real benchmark for visual domain
adaptation[C]//Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. New York:
IEEE, 2018: 2021-2026.
[26] DENG J, DONG W, SOCHER R, et al. Imagenet: A largescale hierarchical image database[C]// Proceedings of the
IEEE conference on computer vision and pattern
recognition. New York: IEEE, 2009: 248-255.
[27] HE K, ZHANG X, REN S, et al. Deep residual learning
for image recognition[C]//Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.
New York: IEEE, 2016: 770-778.
[28] LU X, SHEN P, TSAO Y, et al. Unsupervised neural
adaptation model based on optimal transport for spoken
language identification[C]//ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2021, 7213–7217.
[29] SIMONYAN K, ZISSERMAN A. Very deep
convolutional networks for large-scale image
recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[30] GANIN Y, USTINOVA E, AJAKAN H, et al. Domainadversarial training of neural networks[J]. Journal of
machine learning research, 2016, 17(59): 1-35.
[31] LIU H, CAO Z, LONG M, et al. Separate to adapt: Open
set domain adaptation via progressive
separation[C]//Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. New York:
IEEE, 2019: 2927-2936.
[32] GRETTON, ARTHUR, et al. A kernel two-sample test[J].
The Journal of Machine Learning Research. 2012, 13.1:
723-773.
[33] 但雨芳, 陶剑文. 可能性分布距离度量:一种鲁棒的域
适应学习方法[J]. 计算机科学与探索, 2024, 18(3): 674-
692.
DAN Yufang, TAO Jianwen. Possibilistic distribution
distance measure: robust domain adaptation learning
method[J]. Journal of Frontiers of Computer Science and
Technology, 2024, 18(3): 674-692.
[34] FANG Z, LU J, LIU F, et al. Open set domain adaptation:
Theoretical bound and algorithm[J]. IEEE Transactions on
neural networks and learning systems.2021: 32(10):4309–
4322.
[35] LUO Y, WANG Z, HUANG Z, et al. Progressive graph
learning for open-set domain adaptation[C]//International
Conference on Machine Learning. PMLR, 2020: 6468-
6478.
[36] WANG Q, MENG F, BRECKON T. Progressively Select
and Reject Pseudo-labelled Samples for Open-Set Domain
Adaptation. arXiv:2110.12635, 2021.
[37] BUCCI S, LOGHMANI M R, TOMMASI T. On the
effectiveness of image rotation for open set domainadaptation[C]//European conference on computer vision.
Cham: Springer International Publishing, 2020: 422-438.
[38] LIU Z, CHEN G, LI Z, et al. Psdc: A prototype-based
shared-dummy classifier model for open-set domain
adaptation[J]. IEEE Transactions on Cybernetics, 2022.
[39] JANG J H, NA B, SHIN D H, et al. Unknown-aware
domain adversarial learning for open-set domain
adaptation[J]. Advances in Neural Information Processing
Systems, 2022, 35: 16755-16767.
[40] LI J, YANG L, WANG Q, et al. WDAN: A weighted
discriminative adversarial network with dual classifiers
for fine-grained open-set domain adaptation[J]. IEEE
Transactions on Circuits and Systems for Video
Technology, 2023.
[41] YOU K, LONG M S, CAO Z J, et al. Universal domain
adaptation[C]// Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. New York:
IEEE, 2019.
[42] LI W, LIU J, HAN B, et al. Adjustment and alignment for
unbiased open set domain adaptation[C]//Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. New York: IEEE, 2023: 24110-
24119.
[43] LI G, KANG G, ZHU Y, et al. Domain consensus
clustering for universal domain
adaptation[C]//Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2021: 9757-
9766.
[44] XU Y, CHEN L, DUAN L, et al. Open set domain
adaptation with soft unknown-class rejection[J]. IEEE
Transactions on Neural Networks and Learning Systems,
2021.
[45] CHANG D, SAIN A, MA Z, et al. Mind the Gap: Open
Set Domain Adaptation via Mutual-to-Separate
Framework[J]. IEEE transactions on circuits and systems
for video technology, 2023.
[46] 汪云云, 孙顾威, 赵国祥, 等. 基于自监督知识的无监督
新集域适应学习[J]. 软件学报, 2022, 33(04): 1170-1182.
WANG Y, SUN G, ZHAO G, et al. Unsupervised new set
adaptation learning based on self-supervised knowledge
[J]. Journal of Software, 2022,33(04):1170-1182.
[47] 田青, 孙灿宇, 储奕. 基于自适应权重的多源部分域适应
[J]. 软件学报, 2024, 35(4): 1703-1716.
TIAN Q, SUN C, CHU Y. Adaptive weight-induced
multi-source partial domain adaptation[J]. Journal of
Software, 2024, 35(4): 1703-1716.
[48] WANG Y, HHUANG H, RUDIN C, et al. Understanding
how dimension reduction tools work: an empirical
approach to deciphering t-sne, umap, trimap, and pacmap
for data visualization[J]. Journal of Machine Learning
Research, 2021, 22(201): 1-73.
[49] LU Y, SHEN M, MA A, et al. MLNet: Mutual learning
network with neighborhood invariance for universal
domain adaptation[C]//Proceedings of the AAAI
Conference on Artificial Intelligence. Washington, DC:
AAAI Press, 2024, 38(4): 3900-3908.
[50] TIAN Q, ZHU Y, SUN H, et al. Unsupervised domain
adaptation through dynamically aligning both the feature
and label spaces[J]. IEEE Transactions on Circuits and
Systems for Video Technology, 2022, 32(12): 8562-8573
|