[1] WEBB A. Introduction to biomedical imaging[M]. John
Wiley & Sons, 2022.
[2] DOU Q, CHEN H, YU L, et al. Automatic detection of
cerebral microbleeds from MR images via 3D
convolutional neural networks[J]. IEEE Transactions on
Medical Imaging, 2016, 35(5): 1182-1195. DOI:
10.1109/TMI.2016.2528129.
[3] RASAL R, CASTRO D C, PAWLOWSKI N, et al. Deep
structural causal shape models[C]//European Conference
on Computer Vision. Cham: Springer Nature Switzerland,
2022: 400-432.
https://doi.org/10.1007/978-3-031-25075-0_28.
[4] LIU F, CAI J, HUO Y, et al. Jssr: A joint synthesis,
segmentation, and registration system for 3D multi-modal
image alignment of large-scale pathological CT
scans[C]//European Conference on Computer Vision.
Cham: Springer International Publishing, 2020: 257-274.https://doi.org/10.1007/978-3-030-58601-0_16.
[5] 李翠云, 白静, 郑凉. 融合边缘增强注意力机制和
U-Net 网络的医学图像分割[J]. 图学学报, 2022, 43(2):
273-278.
LI CUI-YUN, BAI JING, ZHENG LIANG. A U-Net based
contour enhanced attention for medical image segmentatio
n[J]. Journal of Graphics, 2022, 43(2): 273-278.
[6] 张淑军, 彭中, 李辉. SAU-Net:基于 U-Net 和自注意力
机制的医学图像分割方法[J]. 电子学报, 2022, 50(10):
2433-2442. https://doi.org/10.12263/DZXB.20200984.
ZHANG SHUJUN, PENG ZHONG, LI HUI. SAU-Net:
Medical Image Segmentation Method Based on U-Net and
Self-Attention[J]. Acta Electronica Sinica, 2022, 50(10):
2433-2442. https://doi.org/10.12263/DZXB.20200984.
[7] HE K, ZHANG X, REN S, et al. Deep residual learning
for image recognition[C]//Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.
2016: 770-778.
https://api.semanticscholar.org/CorpusID:206594692.
[8] 谢娟英, 张凯云. SOSNet:一种非对称编码器-解码器结
构的非小细胞肺癌 CT 图像分割模型[J]. 电子学报,
2024, 52(3): 824-837.
https://doi.org/10.12263/DZXB.20220853.
XIE JUAN-YING, ZHANG KAI-YUN. SOSNet: An
Asymmetric Encoder-Decoder Structure Model for
Automatic Segmenting Non-Small Cell Lung Cancer CT
Images[J]. Acta Electronica Sinica, 2024, 52(3): 824-837.
https://doi.org/10.12263/DZXB.20220853.
[9] RAZZAK M I, NAZ S, ZAIB A. Deep learning for
medical image processing: Overview, challenges and the
future[J]. Classification in BioApps: Automation of
Decision Making, 2018: 323-350.
https://api.semanticscholar.org/CorpusID:6736412.
[10] 王欣雨, 刘慧, 朱积成, 盛玉瑞, 张彩明. 基于高低频
特征分解的深度多模态医学图像融合网络[J]. 图学学
报, 2024, 45(1): 65-77.
WANG XINYU, LIU HUI, ZHU JICHENG, SHENG
YURUI, ZHANG CAIMING. Deep multimodal medical
image fusion network based on high-low frequency
feature decomposition[J]. Journal of Graphics, 2024, 45(1):
65-77.
[11] SAHA A, TUSHAR F I, FARYNA K, et al. Weakly
supervised 3D classification of chest CT using aggregated
multi-resolution deep segmentation features[C]//Medical
Imaging 2020: Computer-Aided Diagnosis. SPIE, 2020,
11314: 39-44. http://dx.doi.org/10.1117/12.2550857.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention
is all you need[J]. Advances in Neural Information
Processing Systems, 2017, 30.
[13] GRAVES A, WAYNE G, DANIHELKA I. Neural Turing
Machines[J]. arXiv preprint arXiv:1410.5401, 2014.
[14] RYOO M S, GOPALAKRISHNAN K, KAHATAPITIYA
K, et al. Token Turing Machines[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2023: 19070-19081.
https://api.semanticscholar.org/CorpusID:253553171.
[15] GU A, DAO T. Mamba: Linear-time sequence modeling
with selective state spaces[J]. arXiv preprint
arXiv:2312.00752, 2023.
https://api.semanticscholar.org/CorpusID:265551773.
[16] YANG J, SHI R, WEI D, et al. MedMNIST v2 - a
large-scale lightweight benchmark for 2D and 3D
biomedical image classification[J]. Scientific Data, 2023,
10(1): 41.
[17] BORE J C, LI P, JIANG L, et al. A long short-term
memory network for sparse spatiotemporal EEG source
imaging[J]. IEEE Transactions on Medical Imaging, 2021,
40(12): 3787-3800. DOI: 10.1109/TMI.2021.3097758.
[18] CHEN X, LOWERISON M R, DONG Z, et al.
Localization free super-resolution microbubble
velocimetry using a long short-term memory neural
network[J]. IEEE Transactions on Medical Imaging, 2023,
42(8): 2374-2385. DOI: 10.1109/TMI.2023.3251197.
[19] ZHANG R, QIN B, ZHAO J, et al. Locating X-ray
coronary angiogram keyframes via long short-term
spatiotemporal attention with image-to-patch contrastive
learning[J]. IEEE Transactions on Medical Imaging, 2023,
43(1): 51-63. DOI: 10.1109/TMI.2023.3286859.
[20] CHEN Y, ZHANG H, WANG Y, et al. MAMA Net:
Multi-scale attention memory autoencoder network for
anomaly detection[J]. IEEE Transactions on Medical
Imaging, 2020, 40(3): 1032-1041. DOI:
10.1109/TMI.2020.3045295.
[21] WANG P, ZHANG H, ZHU M, et al. MGIML: CancerGrading with Incomplete Radiology-Pathology Data via
Memory Learning and Gradient Homogenization[J]. IEEE
Transactions on Medical Imaging, 2024.
https://api.semanticscholar.org/CorpusID:267029732.
[22] RYOO M S, PIERGIOVANNI A J, ARNAB A, et al.
TokenLearner: What can 8 learned tokens do for images
and videos?[J]. arXiv preprint arXiv:2106.11297, 2021.
[23] JAEGLE A, GIMENO F, BROCK A, et al. Perceiver:
General perception with iterative
attention[C]//International Conference on Machine
Learning. PMLR, 2021: 4651-4664.
[24] AHMADI N, TSANG M Y, GU A N, et al.
Transformer-based spatio-temporal analysis for
classification of aortic stenosis severity from
echocardiography cine series[J]. IEEE Transactions on
Medical Imaging, 2023.
https://api.semanticscholar.org/CorpusID:260923888.
[25] YANG Z, PAN J, DAI J, et al. Self-supervised lightweight
depth estimation in endoscopy combining CNN and
transformer[J]. IEEE Transactions on Medical Imaging,
2024.
https://api.semanticscholar.org/CorpusID:266930548.
[26] WU R, LIU Y, LIANG P, et al. Ultralight VM-Unet:
Parallel Vision Mamba Significantly Reduces Parameters
for Skin Lesion Segmentation[J]. arXiv preprint
arXiv:2403.20035, 2024. https://arxiv.org/abs/2403.20035.
[27] RUAN J, XIANG S. VM-Unet: Vision Mamba Unet for
Medical Image Segmentation[J]. arXiv preprint
arXiv:2402.02491, 2024. https://arxiv.org/abs/2402.02491.
[28] ZHOU J, JIANG M, WU J, et al. MGI: Multimodal
Contrastive Pre-training of Genomic and Medical
Imaging[J]. arXiv preprint arXiv:2406.00631, 2024.
https://arxiv.org/abs/2406.00631.
[29] K. HE, X. ZHANG, S. REN, and J. SUN, "Deep Residual
Learning for Image Recognition," 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 2016, pp. 770-778, doi:
10.1109/CVPR.2016.90.
[30] FEURER M, KLEIN A, EGGENSPERGER K, et al.
Efficient and robust automated machine learning[J].
Advances in Neural Information Processing Systems,
2015, 28.
[31] JIN H, SONG Q, HU X. Auto-Keras: An efficient neural
architecture search system[C]//Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019: 1946-1956.
[32] LIU J, LI Y, CAO G, et al. Feature pyramid vision
transformer for MedMNIST classification
decathlon[C]//2022 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2022: 1-8.
[33] YANG J, HUANG X, HE Y, et al. Reinventing 2D
convolutions for 3D images[J]. IEEE Journal of
Biomedical and Health Informatics, 2021, 25(8):
3009-3018.
[34] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.
An image is worth 16x16 words: Transformers for image
recognition at scale[J]. arXiv preprint arXiv:2010.11929,
2020.
[35] RADFORD A, KIM J W, HALLACY C, et al. Learning
transferable visual models from natural language
supervision[C]//International conference on machine
learning. PmLR, 2021: 8748-8763.
[36] LIU Z, LIN Y, et al. Swin transformer: Hierarchical vision
transformer using shifted windows[C]//Proceedings of the
IEEE/CVF international conference on computer vision.
2021: 10012-10022.
|