[1] Yuan M, Zhou Y, Ren X, et al. YOLO-HMC: An improved
method for PCB surface defect detection[J]. IEEE
Transactions on Instrumentation and Measurement, 2024,
73: 1-11.
[2] Lei L, Li H X, Yang H D. Reliable and Lightweight
Adaptive Convolution Network for PCB Surface Defect
Detection[J]. IEEE Transactions on Instrumentation and
Measurement, 2024.
[3] Zhou W, Li C, Ye Z, et al. An efficient tiny defect
detection method for PCB with improved YOLO through a
compression training strategy[J]. IEEE Transactions on
Instrumentation and Measurement, 2024.
[4] Chen C, Wu Q, Zhang J, et al. U2D2PCB:
Uncertainty-aware Unsupervised Defect Detection on PCB
Images Using Reconstructive and Discriminative
Models[J]. IEEE Transactions on Instrumentation and
Measurement, 2024.
[5] Baygin M, Karakose M, Sarimaden A, et al. Machine
vision based defect detection approach using image
processing[C]//2017 international artificial intelligence
and data processing symposium (IDAP). IEEE, 2017: 1-5.
[6] Wong T M, Kahl M, Haring Bolívar P, et al.
Computational image enhancement for frequency
modulated continuous wave (FMCW) THz image[J].
Journal of Infrared, Millimeter, and Terahertz Waves, 2019,
40: 775-800.
[7] Liu Z, Qu B. Machine vision based online detection of
PCB defect[J]. Microprocessors and Microsystems, 2021,
82: 103807.
[8] Ye X, Tang Y, Zhang D, et al. PCB pad detection algorithm
based on principal component analysis and classification
regression tree[J]. Journal of Flow Visualization and Image
Processing, 2022, 29(1).
[9] 郭战岭,徐雷,冉光再,等.基于 ORB 算法及图像差分的
PCB 缺陷检测[J].数字技术与应用, 2022, 40(03): 38-41,
142.
Guo Z, Xu L, Ran G, et al. PCB defect detection based on
ORB algorithm and image difference[J]. Digital
Technology and Applications, 2022, 40(3): 38-41, 142.
[10] Chang Y, Xue Y, Zhang Y, et al. PCB defect detection
based on PSO-optimized threshold segmentation and
SURF features[J]. Signal, Image and Video Processing,
2024, 18(5): 4327-4336.
[11] 朱寒,林丽,陈德全,等.基于多方向改进 Sobel 算子的 PCB
图像定位校正方法[J].电子测量与仪器学报, 2019,
33(09): 121-128.
Zhu H, Lin L, Chen D Q, et al. PCB image orientation
rectification method based on multi-directional improved
Sobel operator[J]. Journal of Electronic Measurement andInstrumentation, 2019, 33(09): 121-128.
[12] Ding R, Dai L, Li G, et al. TDD‐net: a tiny defect
detection network for printed circuit boards[J]. CAAI
Transactions on Intelligence Technology, 2019, 4(2):
110-116.
[13] Lan Z, Hong Y, Li Y. An improved YOLOv3 method for
PCB surface defect detection[C]//2021 IEEE International
Conference on Power Electronics, Computer Applications
(ICPECA). IEEE, 2021: 1009-1015.
[14] Xiao G, Hou S, Zhou H. PCB defect detection algorithm
based on CDI-YOLO[J]. Scientific Reports, 2024, 14(1):
7351.
[15] Tang J, Liu S, Zhao D, et al. PCB-YOLO: An improved
detection algorithm of PCB surface defects based on
YOLOv5[J]. Sustainability, 2023, 15(7): 5963.
[16] Wu Y, Zheng L, Chen E. EEMNet: an end-to-end efficient
model for PCB surface tiny defect detection[J].
International Journal of Machine Learning and
Cybernetics, 2024, 15(12): 5579-5594.
[17] Liu T, Cao G Z, He Z, et al. Refined defect detector with
deformable transformer and pyramid feature fusion for
PCB detection[J]. IEEE Transactions on Instrumentation
and Measurement, 2023.
[18] Li Y, Wang S, Jing Z, et al. DSRF: few-shot PCB surface
defect detection via dynamic selective regulation fusion[J].
The Journal of Supercomputing, 2025, 81(4): 529.
[19] 谢翔,肖金球,汪俞成,等.基于改进 YOLOv5s 的 Deep
PCB 缺陷检测算法研究[J].微电子学与计算机, 2023,
40(07): 1-9.
Xie X, Xiao J Q, Wang Y C, et al. Research on Deep PCB
defect detection algorithm based on improved
YOLOv5s[J]. Microelectronics and Computers, 2023,
40(07): 1-9.
[20] 杨杰,张书杰.基于密集 YOLOv3 的印刷电路板缺陷识别
[J].北京邮电大学学报, 2022, 45(05): 42-48.
Yand J, Zhang S J. Defect Recognition of Printed Circuit
Board Based on YOLOv3-Dense[J]. Journal of Beijing
University of Posts and Telecommunications, 2022, 45(5):
42-48.
[21] 卢小康,欧阳华兵,陈田,等.基于深度学习的 PCB 焊锡缺
陷检测[J].无线电工程, 2024, 54(02): 276-283.
Lu X K, Ouyang H B,Chen T, et al. Research on PCB
Solder Defect Defection Based on Deep Learning[J].
Radio Engineering, 2024, 54(02): 276-283.
[22] Tan M, Pang R, Le Q V. Efficientdet: Scalable and
efficient object detection[C]//Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2020: 10781-10790.
[23] Ke J, He L, Han B, et al. ProFPN: Progressive feature
pyramid network with soft proposal assignment for object
detection[J]. Knowledge-Based Systems, 2024: 112078.
[24] Cui Y, Ren W, Knoll A. Omni-Kernel Network for Image
Restoration[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2024, 38(2): 1426-1434.
[25] Tong Z, Chen Y, Xu Z, et al. Wise-IoU: bounding box
regression loss with dynamic focusing mechanism[J].
arXiv preprint arXiv:2301.10051, 2023.
[26] Huang W, Wei P. A PCB dataset for defects detection and
classification[J]. arXiv preprint arXiv:1901.08204, 2019.
[27] Tang S, He F, Huang X, et al. Online PCB defect detector
on a new PCB defect dataset[J]. arXiv preprint
arXiv:1902.06197, 2019.
[28] Lv S, Ouyang B, Deng Z, et al. A dataset for deep learning
based detection of printed circuit board surface defect[J].
Scientific Data, 2024, 11(1): 811.
[29] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards
real-time object detection with region proposal
networks[J]. IEEE transactions on pattern analysis and
machine intelligence, 2016, 39(6): 1137-1149.
[30] Lin T. Focal Loss for Dense Object Detection[J]. arXiv
preprint arXiv:1708.02002, 2017.
[31] Lyu C, Zhang W, Huang H, et al. Rtmdet: An empirical
study of designing real-time object detectors[J]. arXiv
preprint arXiv:2212.07784, 2022.
|