[1]
[2]
[3]
牛雪松,韩琥,山世光.基于rPPG的生理指标测量方法综
述[J].中国图象图形学报,2020,25(11):2321-2336.Niu
Xuesong, Han Hu, Shan Shiguang. A Review of
Physiological Index Measurement Methods Based on
rPPG[J]. Journal of Image and Graphics, 2020, 25(11):
2321-2336.
郑鲲,孔江萍,周晶,等.iPPG技术及生理参数检测的教育
应用综述[J].计算机工程与应
用,2021,57(05):25-35.Zheng Kun, Kong Jiangping, Zhou
Jing, et al. A Review of the Educational Applications of
iPPG Technology and Physiological Parameter
Detection[J]. Computer Engineering and Applications,
2021, 57(05): 25-35.
J. He , N. Jiang. Fast Multilevel Mental Stress
Identification From Bispectrum-Based Heart Rate
Variability Feature[J]. IEEE Transactions on Industrial
Informatics,2024,20(2), 1124-1133.
[4]
[5]
[6]
[7]
[8]
[9]
F. Wang, W. Yao. ECG-Based Real-Time Drivers’
Fatigue Detection Using a Novel Elastic Dry Electrode[J].
IEEE Transactions on Instrumentation and Measurement,
2024,73(9502916), 1-16.
H. Lin, W. C. The influence of using affective tutoring
system in accounting remedial instruction on learning
performance and usability, Computers in Human
Behavior[J]. 2014,41, 514-522.
X. Liu, Y. Zhang, Z. Yu et al. rPPG-MAE:
Self-Supervised Pretraining With Masked Autoencoders
for Remote Physiological Measurements[J]. IEEE
Transactions on Multimedia, 2024 26, 7278-7293.
Z. Yang, H. Wang and F. Lu. Assessment of Deep
Learning-Based Heart Rate Estimation Using Remote
Photoplethysmography Under Different Illuminations[J].
IEEE Transactions on Human-Machine Systems, 2022, 52,
1236-1246.
K. Zheng , J. Kong . Hand-over-face occlusion and
distance adaptive heart rate detection based on imaging
photoplethysmography and pixel distance in online
learning[J]. Biomedical Signal Processing and Control,
2023,85, 104898 .
H. Gao, C. Zhang, S. Pei et al. Region of Interest Analysis
Using Delaunay Triangulation for Facial Video-Based
Heart Rate Estimation[J]. IEEE Transactions on
Instrumentation and Measurement, 2024, 73(5009712),
1-12.
[10] Y. Duan, J. Ren, H. Yu et al. GAN-in-GAN for Monaural
Speech Enhancement[J]. IEEE Signal Processing Letters,
2023, 30,853-857.
[11] Z. Pan, B. Wang, R. Zhang et al. MIML-GAN: A
GAN-Based Algorithm for Multi-Instance Multi-Label
Learning on Overlapping Signal Waveform
Recognition[J]. IEEE Transactions on Signal Processing,
2023, 71, 859-872.
[12] R. Song, H. Chen. PulseGAN: Learning to Generate
Realistic Pulse Waveforms in Remote
Photoplethysmography[J]. IEEE Journal of Biomedical
and Health Informatics, 2021, 25, 1373-1384.
[13] J. Shin, W. Chung. Multi-Band CNN With
Band-Dependent Kernels and Amalgamated Cross
Entropy Loss for Motor Imagery Classification[J]. IEEE
Journal of Biomedical and Health Informatics, 2023, 27,
4466-4477.
[14] X. Niu , S. Shan. RhythmNet: End-to-End Heart Rate
Estimation From Face via Spatial-Temporal
Representation[J]. IEEE Transactions on Image
Processing, 2020,29, 2409-2423.
[15] G. Heusch, A. Anjos, S. Marcel. A reproducible study on
remote heart rate measurement[J]. ArXiv, abs/1709.00962.
1-19.
[16] 张淼萱,张洪刚.人脸表情识别可解释性研究综述[J/OL].
计算机学
报,1-32[2024-10-24].http://kns.cnki.net/kcms/detail/11.18
26.tp.20240919.1520.003.html.Zhang Miaoxuan, Zhang
Honggang. A Review of Research on the Interpretability
of Facial Expression Recognition[J/OL]. Chinese Journal
of Computers, 1-32[2024-10-24].
[17] 司俊勇,付永华.多模态数据融合的在线学习情感计算研
究[J].图书与情报,2024,(03):69-80.Si Junyong, Fu
Yonghua. Research on Affective Computing in Online
Learning with Multimodal Data Fusion[J]. Library and
Information, 2024,(03):69-80.
[18] 崔家郡,康璐,马苗.课堂师生交互智能分析技术研究综
述[J].计算机科学,2024,51(10):40-49.Cui Jiajun, Kang Lu,
Ma Miao. A Review of Research on Intelligent Analysis
Technology for Classroom Teacher-Student Interaction[J].
Computer Science, 2024,51(10):40-49.
[19] 刘洋,曹新生,文治洪,等.心电技术在飞行生理参数监测
与评估教学中的应用[J].心脏杂
志,2023,35(06):694-699.Liu Yang, Cao Xinsheng, Wen
Zhihong, et al. Application of Electrocardiogram
Technology in the Teaching of Monitoring and Evaluation
of Flight Physiological Parameters[J]. Chinese Heart
Journal, 2023, 35(06): 694-699.
[20] 徐一菲,金龙哲,魏祎璇,等.有限空间作业人员生理状态
监测设备研制[J].中国安全科学学
报,2021,31(03):82-89.Xu Yifei, Jin Longzhe, Wei Yixuan,
et al. Development of Physiological State Monitoring
Equipment for Workers in Confined Spaces[J]. China
Safety Science Journal, 2021, 31(03): 82-89.
[21] 权学良,曾志刚,蒋建华,等.基于生理信号的情感计算研
究综述[J].自动化学报,2021,47(08):1769-1784. Quan
Xueliang, Zeng Zhigang, Jiang Jianhua, et al. A Review of
Research on Affective Computing Based on Physiological
Signals[J]. Acta Automatica Sinica, 2021, 47(08):
1769-1784.
[22] H.Y. Wu, M. Rubinstein. Eulerian video magnification for
revealing subtle changes in the world[J]. ACM
Transactions on Graphics, 2021, 31, 1-8.
[23] W. Verkruyssea, L. O. Svaasand. Remote
plethysmographic imaging using ambient light[J]. Optics
Express, 2008, 16, 21434-21445.
[24] M. Z. Poh, D. J. McDuff. Non-contact, automated cardiac
pulse measurements using video imaging and blind source
separation[J]. Optics Express, 2010, 18, 10762.
[25] M. Cardiac Activity, J. Lewandowska. Measuring pulse
rate with a webcam—a Non-contact method for evaluating
cardiac activity[C]//FedCSIS 2011. Federated Conferenceon Computer Science and Information Systems, Szczecin,
Poland, 2011, 405-410.
[26] G. de Haan, V. Jeanne. Robust Pulse Rate From
Chrominance-Based rPPG[J]. IEEE Transactions on
Biomedical Engineering, 2013, 60, 2878-2886.
[27] WANG W, A. C. den Brinker. Algorithmic Principles of
Remote PPG[J]. IEEE Transactions on Biomedical
Engineering, 2016,64, 1479-1491.
[28] Z. Yu, X. Li. Remote Photoplethysmograph Signal
Measurement from Facial Videos Using Spatio-Temporal
Networks[J]. arXiv preprint, 2019 arXiv:1905.02419.
[29] LI Q, GUO D, W Qian et al. Channel-Wise Interactive
Learning for Remote Heart Rate Estimation From Facial
Video[J]. IEEE Transactions on Circuits and Systems for
Video Technology, 2024, 34(6), 4542-4555.
[30] QIAN W, GUO D. Dual-Path TokenLearner for Remote
Photoplethysmography-Based Physiological Measurement
With Facial Videos, IEEE Transactions on Computational
Social Systems, 2024, 11(3), 4465-4477.
[31] LU H, HAN H, ZHOU S K. Dual-GAN: Joint BVP and
Noise Modeling for Remote Physiological
Measurement[C]// CVPR 2021: IEEE/CVF Conference on
Computer Vision and Pattern Recognition, , Nashville, TN,
USA, 12399-12408.
[32] S. Lee, S. B. Kim. Parallel Simulated Annealing with a
Greedy Algorithm for Bayesian Network Structure
Learning[J]. IEEE Transactions on Knowledge and Data
Engineering, 2020, 32(6), 1157-1166.
[33] M. Mirza, S. Osindero. Conditional generative adversarial
nets[J]. 2014,arXiv preprint arXiv:1411.1784.
[34] S. Pascual, A. Bonafonte, J. Serra. SEGAN: Speech
enhancement generative adversarial network[J].
Interspeech, 2017, 3642-3646.
[35] ZHENG K, CI KY. Heart rate prediction from facial video
with masks using eye location and corrected by
convolutional neural networks[J]. Biomedical Signal
Processing And Control, 2022,75, 103609.
[36] P. Bakmohammadi, E. Noorzai. Optimization of the
design of the primary school classrooms in terms of
energy and daylight performance considering occupants’
thermal and visual comfort[J]. Energy Reports, 2020, 6,
1590-1607.
[37] R. Stricker, S. Mller, and H. Gross. Non-contact
video-based pulse rate measurement on a mobile service
robot[C]// IEEE International Symposium on Robot and
Human Interactive Communication, 2014,1056–1062.
[38] Sabour R. M., Benezeth Y., De Oliveira P., et al.
UBFC-Phys: A Multimodal Database For
Psychophysiological Studies of Social Stress[J]. IEEE
Transactions on Affective Computing, 2023, 14(1):
622-636.
[39] R. Castaldo, L. Montesinos, P. Melillo, et al., Ultra-short
term HRV features as surrogates of short term HRV: a
case study on mental stress detection in real life[J]. BMC
Medical Informatics and Decision Making, 2019, 19, 12. |