[1] Raza S, Rahman M, Kamawal S, et al. A comprehensive review of recommender systems: Transitioning from theory to
practice[J]. arXiv preprint arXiv:2407.13699, 2024.
[2] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[3] He X, Liao L, Zhang H, et al. Neural collaborative filtering[C]//Proceedings of the 26th international conference on world wide
web. 2017: 173-182.
[4] Ying R, He R, Chen K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining. 2018: 974-983.
[5] Wu S, Sun F, Zhang W, et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys, 2022,
55(5): 1-37.
[6] Wang X, He X, Wang M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd international ACM SIGIR
conference on Research and development in Information Retrieval. 2019: 165-174.
[7] Dong Y, Chawla N V, Swami A. metapath2vec: Scalable representation learning for heterogeneous networks[C]//Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 2017: 135-144.
[8] Shi C, Hu B, Zhao W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE transactions on
knowledge and data engineering, 2018, 31(2): 357-370. [9] Fu T, Lee W C, Lei Z. Hin2vec: Explore meta-paths in heterogeneous information networks for representation
learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017: 1797-1806.
[10] Wang X, Ji H, Shi C, et al. Heterogeneous graph attention network[C]//The world wide web conference. 2019: 2022-2032.
[11] Deldjoo Y, Schedl M, Cremonesi P, et al. Recommender systems leveraging multimedia content[J]. ACM Computing Surveys
(CSUR), 2020, 53(5): 1-38.
[12] Zhu J, Dai Q, Su L, et al. Bars: Towards open benchmarking for recommender systems[C]//Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval. 2022: 2912-2923.
[13] Yuan Z, Yuan F, Song Y, et al. Where to go next for recommender systems? id-vs. modality-based recommender models
revisited[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval. 2023: 2639-2649.
[14] Nojavanasghari B, Gopinath D, Koushik J, et al. Deep multimodal fusion for persuasiveness prediction[C]//Proceedings of the
18th ACM international conference on multimodal interaction. 2016: 284-288.
[15] Pérez-Rúa J M, Vielzeuf V, Pateux S, et al. Mfas: Multimodal fusion architecture search[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019: 6966-6975.
[16] Wei Y, Wang X, Nie L, et al. MMGCN: Multi-modal graph convolution network for personalized recommendation of
micro-video[C]//Proceedings of the 27th ACM international conference on multimedia. 2019: 1437-1445.
[17] Tao Z, Wei Y, Wang X, et al. Mgat: Multimodal graph attention network for recommendation[J]. Information Processing &
Management, 2020, 57(5): 102277.
[18] Liu S, Chen Z, Liu H, et al. User-video co-attention network for personalized micro-video recommendation[C]//The world wide
web conference. 2019: 3020-3026.
[19] 王紫萱 , 张 凯 涵 , 蔡 江 辉 , 等 . 融 合 多 模 态 特 征 的 可 解 释 推 荐 算 法 [J]. 计 算 机 系 统 应
用,2025,34(03):62-71.DOI:10.15888/j.cnki.csa.009810.
Wang Z X, Zhang K H, Cai J H, et al. Explainable Recommendation Algorithm Fusing Multimodal Features[J]. Computer
Systems Applications,2025,34(03):62-71.DOI:10.15888/j.cnki.csa.009810.
[20] Chen W, Huang P, Xu J, et al. POG: personalized outfit generation for fashion recommendation at Alibaba
iFashion[C]//Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019:
2662-2670.
[21] Wu C, Wu F, Qi T, et al. Mm-rec: Visiolinguistic model empowered multimodal news recommendation[C]//Proceedings of the
45th international ACM SIGIR conference on research and development in information retrieval. 2022: 2560-2564.
[22] Liu Y, Yang S, Lei C, et al. Pre-training graph transformer with multimodal side information for
recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia. 2021: 2853-2861.
[23] Sun R, Cao X, Zhao Y, et al. Multi-modal knowledge graphs for recommender systems[C]//Proceedings of the 29th ACM
international conference on information & knowledge management. 2020: 1405-1414.
[24] Ren X, Xia L, Zhao J, et al. Disentangled contrastive collaborative filtering[C]//Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 2023: 1137-1146.
[25] Liu K, Xue F, Guo D, et al. Multimodal graph contrastive learning for multimedia-based recommendation[J]. IEEE Transactions
on Multimedia, 2023, 25: 9343-9355.
[26] Wei W, Huang C, Xia L, et al. Multi-modal self-supervised learning for recommendation[C]//Proceedings of the ACM Web
Conference 2023. 2023: 790-800.
[27] Sun Y, Han J, Yan X, et al. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks[J].
Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003.
[28] Shi C, Kong X, Huang Y, et al. Hetesim: A general framework for relevance measure in heterogeneous networks[J]. IEEETransactions on Knowledge and Data Engineering, 2014, 26(10): 2479-2492.
[29] Yu X, Ren X, Sun Y, et al. Personalized entity recommendation: A heterogeneous information network approach[C]//Proceedings
of the 7th ACM international conference on Web search and data mining. 2014: 283-292.
[30] Huang Z, Zheng Y, Cheng R, et al. Meta structure: Computing relevance in large heterogeneous information
networks[C]//Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining. 2016:
1595-1604.
[31] Zhao H, Yao Q, Li J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 2017: 635-644.
[32] 李亚聪,刘皓冰,蒋若冰,等.异质图表征学习综述[J/OL].软件学报,1-33[2025-03-25].https://doi.org/10.13328/j.cnki.jos.007319.
Li Y, Liu H B, Jiang R B, et al. Survey on Heterogeneous Graph Representation Learning[J/OL]. Journal of
Software,1-33[2025-03-25].https://doi.org/10.13328/j.cnki.jos.007319.
[33] 漆盛,高榕,邵雄凯,等.面向超图的可解释性对比元路径群组推荐[J].计算机工程与应用,2024,60(11):268-280.
Qi S, Gao R, Shao X K, et al. Hypergraph-Based Meta-Path Explanation Contrastive Learning for Group Recommendation[J].
Computer Engineering and Applications, 2024, 60(11): 268-280.
[34] Li Q, Tian Y, Wang X, et al. MetapathVis: Inspecting the Effect of Metapath in Heterogeneous Network Embedding via Visual
Analytics[C]//Computer Graphics Forum. 2025: e15285.
[35] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift[C]//International conference on machine learning. pmlr, 2015: 448-456.
[36] Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks[J]. stat, 2017, 1050(20): 10-48550.
[37] GroupLens Research. MovieLens 20M Dataset[EB/OL]. [2024-01-06]. https://grouplens.org/datasets/movielens/20m/.
[38] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016: 770-778.
[39] Devlin J. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805,
2018.
[40] Kaggle. H&M Personalized Fashion Recommendations[EB/OL]. [2024-01-06].
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/data.
[41] Cen Y, Zou X, Zhang J, et al. Representation learning for attributed multiplex heterogeneous network[C]//Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019: 1358-1368.
[42] Tao Z, Liu X, Xia Y, et al. Self-supervised learning for multimedia recommendation[J]. IEEE Transactions on Multimedia, 2022,
25: 5107-5116.
[43] Yang C, Liu M, He F, et al. Similarity modeling on heterogeneous networks via automatic path discovery[C]//Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018,
Proceedings, Part II 18. Springer International Publishing, 2019: 37-54.
[44] Chen C, Zhang M, Liu Y, et al. Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018
world wide web conference. 2018: 1583-1592.
[45] Wang X, Chen Y, Yang J, et al. A reinforcement learning framework for explainable recommendation[C]//2018 IEEE
international conference on data mining (ICDM). IEEE, 2018: 587-596
|