[1] 张文豪, 徐贞顺, 刘纳, et al. 知识图谱补全方
法研究综述[J]. 计算机工程与应用, 2024,
60(12): 61-73.
Zhang Wenhao, Xu Zhenshun, Liu Na, et al.
Review of Knowledge graph completion
methods [J]. Computer Engineering and
Applications, 2024, 60(12): 61-73.
[2] Miller G A. WordNet: a lexical database for
English[J]. Communications of the ACM, 1995,
38(11): 39-41.
[3] Bollacker K, Evans C, Paritosh P, et al. Freebase:
a collaboratively created graph database for
structuring human knowledge; proceedings of the
Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
F, 2008 [C].
[4] Suchanek F M, Kasneci G, Weikum G. Yago: a
core of semantic knowledge; proceedings of the
Proceedings of the 16th international conference
on World Wide Web, F, 2007 [C].
[5] Auer S, Bizer C, Kobilarov G, et al. Dbpedia: A
nucleus for a web of open data; proceedings of
the international semantic web conference, F,
2007 [C]. Springer.
[6] Zhang S, Tay Y, Yao L, et al. Quaternion
knowledge graph embeddings[J]. Advances in
neural information processing systems, 2019, 32.
[7] Cao Z, Xu Q, Yang Z, et al. Dual quaternion
knowledge graph embeddings; proceedings of
the Proceedings of the AAAI conference on
artificial intelligence, F, 2021 [C].
[8] Dong Y, Wang L, Xiang J, et al. RotateCT:
Knowledge graph embedding by rotation and
coordinate transformation in complex space;
proceedings of the Proceedings of the 29th
International Conference on Computational
Linguistics, F, 2022 [C].
[9] Bordes A, Usunier N, Garcia-Duran A, et al.
Translating embeddings for modelingmulti-relational data[J]. Advances in neural
information processing systems, 2013, 26.
[10] Ge X, Wang Y C, Wang B, et al. Knowledge
graph embedding: An overview[J]. APSIPA
Transactions on Signal and Information
Processing, 2024, 13(1).
[11] 杜雪盈, 刘名威, 沈立炜, et al. 面向链接预测
的知识图谱表示学习方法综述[J]. 软件学报,
2024, 35(01): 87-117.
Du Xueying, Liu Mingwei, Shen Liwei, et al.
Overview of Knowledge graph representation
learning methods for Link prediction [J]. Journal
of Software, 2024, 35(01): 87-117.
[12] Wang Z, Zhang J, Feng J, et al. Knowledge graph
embedding by translating on hyperplanes;
proceedings of the Proceedings of the AAAI
conference on artificial intelligence, F, 2014 [C].
[13] Sun Z, Deng Z-H, Nie J-Y, et al. Rotate:
Knowledge graph embedding by relational
rotation in complex space[J]. arXiv preprint
arXiv:190210197, 2019.
[14] Huang X, Tang J, Tan Z, et al. Knowledge graph
embedding by relational and entity rotation[J].
Knowledge-Based Systems, 2021, 229: 107310.
[15] Gao C, Sun C, Shan L, et al. Rotate3d:
Representing relations as rotations in
three-dimensional space for knowledge graph
embedding; proceedings of the Proceedings of
the 29th ACM international conference on
information & knowledge management, F, 2020
[C].
[16] Song T, Luo J, Huang L. Rot-pro: Modeling
transitivity by projection in knowledge graph
embedding[J]. Advances in Neural Information
Processing Systems, 2021, 34: 24695-24706.
[17] Zhang Z, Cai J, Zhang Y, et al. Learning
hierarchy-aware knowledge graph embeddings
for link prediction; proceedings of the
Proceedings of the AAAI conference on artificial
intelligence, F, 2020 [C].
[18] Liang Z, Yang J, Liu H, et al. A semantic filter
based on relations for knowledge graph
completion; proceedings of the Proceedings of
the 2021 Conference on Empirical Methods in
Natural Language Processing, F, 2021 [C].
[19] Li R, Zhao J, Li C, et al. House: Knowledge
graph embedding with householder
parameterization; proceedings of the
International conference on machine learning, F,
2022 [C]. PMLR.
[20] Zhang Q, Wang R, Yang J, et al. Knowledge
graph embedding by reflection transformation[J].
Knowledge-based systems, 2022, 238: 107861.
[21] Xiong B, Zhu S, Nayyeri M, et al.
Ultrahyperbolic knowledge graph embeddings;
proceedings of the Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery
and Data Mining, F, 2022 [C].
[22] Wang K, Liu Y, Lin D, et al. Hyperbolic
geometry is not necessary: Lightweight
euclidean-based models for low-dimensional
knowledge graph embeddings[J]. arXiv preprint
arXiv:210314930, 2021.
[23] Chao L, He J, Wang T, et al. Pairre: Knowledge
graph embeddings via paired relation vectors[J].
arXiv preprint arXiv:201103798, 2020.
[24] Li Y, Fan W, Liu C, et al. TranSHER: Translating
knowledge graph embedding with
hyper-ellipsoidal restriction[J]. arXiv preprint
arXiv:220413221, 2022.
[25] Nickel M, Tresp V, Kriegel H-P. A three-way
model for collective learning on multi-relational
data; proceedings of the Icml, F, 2011 [C].
[26] Yang B, Yih W-T, He X, et al. Embedding
entities and relations for learning and inference
in knowledge bases[J]. arXiv preprint
arXiv:14126575, 2014.
[27] Nickel M, Rosasco L, Poggio T. Holographic
embeddings of knowledge graphs; proceedings
of the Proceedings of the AAAI conference on
artificial intelligence, F, 2016 [C].
[28] Trouillon T, Welbl J, Riedel S, et al. Complex
embeddings for simple link prediction;
proceedings of the International conference on
machine learning, F, 2016 [C]. PMLR.
[29] Balažević I, Allen C, Hospedales T M. Tucker:
Tensor factorization for knowledge graph
completion[J]. arXiv preprint arXiv:190109590,2019.
[30] Dong X, Gabrilovich E, Heitz G, et al.
Knowledge vault: A web-scale approach to
probabilistic knowledge fusion; proceedings of
the Proceedings of the 20th ACM SIGKDD
international conference on Knowledge
discovery and data mining, F, 2014 [C].
[31] Che F, Zhang D, Tao J, et al. Parame: Regarding
neural network parameters as relation
embeddings for knowledge graph completion;
proceedings of the Proceedings of the AAAI
conference on artificial intelligence, F, 2020 [C].
[32] Vashishth S, Sanyal S, Nitin V, et al.
Composition-based multi-relational graph
convolutional networks[J]. arXiv preprint
arXiv:191103082, 2019.
[33] Zhang Q, Wang R, Yang J, et al. Structural
context-based knowledge graph embedding for
link prediction[J]. Neurocomputing, 2022, 470:
109-120.
[34] 张天成, 田雪, 孙相会, et al. 知识图谱嵌入技
术 研 究 综 述 [J]. 软 件 学 报 , 2023, 34(01):
277-311.
Zhang Tiancheng, Tian Xue, Sun Yi, et al.
Overview of Knowledge graph Embedding
technology. Journal of Software, 2023, 34(01):
277-311.
[35] Fatemi B, Ravanbakhsh S, Poole D. Improved
knowledge graph embedding using background
taxonomic information; proceedings of the
Proceedings of the AAAI conference on artificial
intelligence, F, 2019 [C].
[36] Dong Y, Kong Q, Wang L, et al. Dual complex
number knowledge graph embeddings;
proceedings of the Proceedings of the 2024 Joint
International Conference on Computational
Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), F, 2024 [C].
[37] 胡旭阳, 王治政, 孙媛媛, et al. 融合语义解析
的知识图谱表示方法[J]. 计算机研究与发展,
2022, 59(12): 2878-2888.
Hu Xuyang, Wang Zhizheng, Sun Yuanyuan, et
al. Knowledge Graph Representation Method
with Semantic Analysis [J]. Computer Research
and Development, 2022, 59(12): 2878-2888.
[38] Guu K, Miller J, Liang P. Traversing knowledge
graphs in vector space[J]. arXiv preprint
arXiv:150601094, 2015.
[39] Rossi A, Barbosa D, Firmani D, et al. Knowledge
graph embedding for link prediction: A
comparative analysis[J]. ACM Transactions on
Knowledge Discovery from Data (TKDD), 2021,
15(2): 1-49.
|