[1] 刘梅, 赵冰, 张建辉, 等. 急性脑出血患者入院时血压
与住院期间临床结局的关系[J]. 中华流行病学杂志,
2010(9): 2.
Liu, M., Zhao, B., Zhang, J. H., et al. Relationship
between blood pressure at admission and clinical outcomes
during hospitalization in patients with acute cerebral
hemorrhage. Chinese Journal of Epidemiology, 2010(9): 2.
[2] 《中国脑卒中防治报告2021》编写组, 王陇德. 《中国
脑卒中防治报告 2021》概要[J]. 中国脑血管病杂志,
2023, 20(11): 783-792.
Compilation Group of China Stroke Prevention and
Treatment Report 2021, Wang, L. D. Summary of China
Stroke Prevention and Treatment Report 2021. Chinese
Journal of Cerebrovascular Diseases, 2023, 20(11):
783-792.
[3] 张晶. 头颅 CT 衰减率在预测急性缺血性脑卒中发病时
间中的作用研究[D]. 广州医科大学, 2023.
Zhang, J. Research on the Role of Cranial CT Attenuation
Rate in Predicting the Onset Time of Acute Ischemic
Stroke [D]. Guangzhou Medical University, 2023.
[4] 李亚洲. 基于方向场与 Transformer 的脑卒中图像分割
算法研究[D]. 长春工业大学, 2024.
Li, Y. Z. Research on Stroke Image Segmentation
Algorithm Based on Directional Field and Transformer [D].
Changchun University of Technology, 2024.
[5] LECUN Y, BOTTOU L. Gradient-based learning applied
to document recognition[J]. Proceedings of the IEEE, 1998,
86(11): 2278-2324.
[6] RONNEBERGER O, FISCHER P, BROX T. U-Net:
Convolutional
Networks
for
Biomedical
Image
Segmentation[C]//International Conference on Medical
Image Computing and Computer-Assisted Intervention.
2015.
[7] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, etal.
UNet++: A Nested U-Net Architecture for Medical Image
Segmentation[C]//4th Deep Learning in Medical Image
Analysis (DLMIA) Workshop. 2018.
[8] HUANG H, LIN L, TONG R, etal. Unet 3+: A full-scale
connected
unet
for
medical
image
segmentation[C]//ICASSP 2020-2020 IEEE international
conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2020: 1055-1059.
[9] OKTAY O, SCHLEMPER J, LE FOLGOC L, etal.
Attention U-Net: Learning Where to Look for the
Pancreas[C]//Medical Imaging with Deep Learning.
[10] MILLETARI F, NAVAB N, AHMADI S A. V-net: Fully
convolutional neural networks for volumetric medicalimage
segmentation[C]//2016
fourth
international
conference on 3D vision (3DV). Ieee, 2016: 565-571.
[11] 唐斯琪, 陶蔚, 张梁梁, 等. 一种多列特征图融合的深
度人群计数算法[J]. 郑州大学学报:理学版, 2018, 50(2):
6.
Tang, S. Q., Tao, W., Zhang, L. L., et al. A Deep Crowd
Counting Algorithm Based on Multi-Column Feature Map
Fusion. Journal of Zhengzhou University: Natural Science
Edition, 2018, 50(2): 6.
[12] DING H, XIA B, LIU W, etal. A Novel Mamba
Architecture with a Semantic Transformer for Efficient
Real-Time Remote Sensing Semantic Segmentation[J].
Remote Sensing, 2024, 16(14).
[13] VASWANI A. Attention is all you need[J]. Advances in
Neural Information Processing Systems, 2017.
[14] CHEN J, MEI J, LI X, etal. TransUNet: Rethinking the
U-Net architecture design for medical image segmentation
through the lens of transformers[J]. Medical Image
Analysis, 2024, 97: 103280.
[15] CAO H, WANG Y, CHEN J, etal. Swin-unet: Unet-like
pure
transformer
for
medical
image
segmentation[C]//European conference on computer vision.
Springer, 2022: 205-218.
[16] WANG H, CAO P, WANG J, etal. Uctransnet: rethinking
the skip connections in u-net from a channel-wise
perspective with transformer[C]//Proceedings of the AAAI
conference on artificial intelligence, 36. 2022: 2441-2449.
[17] YAZICI Z A, ÖKSÜZ İ, EKENEL H K. GLIMS:
Attention-guided lightweight multi-scale hybrid network
for volumetric semantic segmentation[J]. Image and
Vision Computing, 2024, 146: 105055.
[18] BOUGOURZI F, DORNAIKA F, TALEB-AHMED A,
etal. Rethinking Attention Gated with Hybrid Dual
Pyramid Transformer-CNN for Generalized Segmentation
in Medical Imaging[C]//International Conference on
Pattern Recognition. Springer, 2024: 243-258.
[19] RAHMAN M M, MUNIR M, MARCULESCU R. Emcad:
Efficient multi-scale convolutional attention decoding for
medical image segmentation[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2024: 11769-11779.
[20] GU A, DAO T. Mamba: Linear-Time Sequence Modeling
with Selective State Spaces[C]//First Conference on
Language Modeling.
[21] WANG Z, KONG F, FENG S, etal. Is mamba effective for
time series forecasting[J]. Neurocomputing, 2024: 129178.
[22] WU R, LIU Y, LIANG P, etal. Ultralight vm-unet: Parallel
vision mamba significantly reduces parameters for skin
lesion segmentation[J]. arXiv preprint arXiv:2403.20035,
2024.
[23] WU Z, ZHANG X, LI F, etal. W-Net: A
boundary-enhanced segmentation network for stroke
lesions[J]. Expert Systems with Applications, 2023, 230:
120637.
[24] ZHANG M, YU Y, JIN S, etal. VM-UNET-V2: rethinking
vision
mamba
UNet
segmentation[C]//International
for
medical
Symposium
image
on
Bioinformatics Research and Applications. Springer, 2024:
335-346.
[25] WANG J, CHEN J, CHEN D, etal. Large window-based
mamba unet for medical image segmentation: Beyond
convolution
and self-attention[J].
arXiv:2403.07332, 2024.
arXiv
preprint
[26] LIAO W, ZHU Y, WANG X, etal. Lightm-unet: Mamba
assists
in
lightweight
unet for medical image
segmentation[J]. arXiv preprint arXiv:2403.05246, 2024.
[27] YU H, HUANG J, LI L, etal. Deep fractional Fourier
transform[J]. Advances in Neural Information Processing
Systems, 2023, 36: 72761-72773.
[28] LU L, REN W X, WANG S D. Fractional Fourier
transform: Time-frequency representation and structural
instantaneous frequency identification[J]. Mechanical
Systems and Signal Processing, 2022, 178: 109305.
[29] WANG Y. Fractional fourier transform and its
application[J]. Theoretical and Natural Science, 2024, 42:
8-12.
[30] LIANG K, HAN K, LI X, etal. Symmetry-enhanced
attention network for acute ischemic infarct segmentation
with non-contrast CT images[C]//Medical Image
Computing and Computer Assisted Intervention–MICCAI
2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part VII 24.
Springer, 2021: 432-441.
[31] LIEW S L, LO B P, DONNELLY M R, etal. A large,
curated, open-source stroke neuroimaging dataset to
improve lesion segmentation algorithms[J]. Scientific data,
2022, 9(1): 320.[32] HERNANDEZ PETZSCHE M R, DE LA ROSA E,
HANNING U, etal. ISLES 2022: A multi-center magnetic
resonance imaging stroke lesion segmentation dataset[J].
Scientific data, 2022, 9(1): 762.
[33] LI Z W, GAO W B, LI B Z. The solvability of a class of
convolution equations associated with 2D FRFT[J].
Mathematics, 2020, 8(11): 1928.
[34] ELGAMEL S A, SORAGHAN J J. Using EMD-FrFT
filtering to mitigate very high power interference in chirp
tracking radars[J]. IEEE Signal Processing Letters, 2011,
18(4): 263-266.
[35] ZHAO Y, YU H, WEI G, etal. Parameter estimation of
wideband underwater acoustic multipath channels based on
fractional Fourier transform[J]. IEEE Transactions on
Signal Processing, 2016, 64(20): 5396-5408.
[36] DJUROVIC I, STANKOVIC S, PITAS I. Digital
watermarking in the fractional Fourier transformation
domain[J]. Journal of Network and Computer Applications,
2001, 24(2): 167-173.
[37] TAO R, MENG X Y, WANG Y. Image encryption with
multiorders of fractional Fourier transforms[J]. IEEE
transactions on Information Forensics and Security, 2010,
5(4): 734-738.
[38] MENDLOVIC D, ZALEVSKY Z, OZAKTAS H M.
Applications of the fractional Fourier transform to optical
pattern recognition[J]. Optical Pattern Recognition, 1998:
89-125.
[39] KAUR K, JINDAL N, SINGH K. Fractional Fourier
Transform based Riesz fractional derivative approach for
edge detection and its application in image enhancement[J].
Signal Processing, 2021, 180: 107852.
[40] DI L, LONG H, LIANG J. Fabric defect detection based
on illumination correction and visual salient features[J].
Sensors, 2020, 20(18): 5147.
[41] ZHANG Y, WANG F, NIU Y J, etal. Formin mDia1, a
downstream molecule of FMNL1, regulates Profilin1 for
actin assembly and spindle organization during mouse
oocyte meiosis[J]. Biochimica et Biophysica Acta
(BBA)-Molecular Cell Research, 2015, 1853(2): 317-327.
[42] JHA M, GUPTA R, SAXENA R. A framework for in-vivo
human brain tumor detection using image augmentation
and hybrid features[J]. Health Information Science and
Systems, 2022, 10(1): 23.
[43] YAN Y. Knowledge Discovery and Machine Learning:
Research in Gingivitis Detection[J]. 2021.
[44] ZHU L, LIAO B, ZHANG Q, etal. Vision mamba:
Efficient visual representation learning with bidirectional
state space model[J]. arXiv preprint arXiv:2401.09417,
2024.
[45] WU R, LIU Y, LIANG P, etal. H-vmunet: High-order
vision mamba unet for medical image segmentation[J].
Neurocomputing, 2025: 129447.
[46] WANG J, CHEN J, CHEN D, etal. LKM-UNet: Large
Kernel Vision Mamba UNet for Medical Image
Segmentation[C]//International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Springer, 2024: 360-370.
[47] KUMAR A, JIANG H, IMRAN M, etal. A flexible 2.5 D
medical image segmentation approach with in-slice and
cross-slice attention[J]. Computers in Biology and
Medicine, 2024, 182: 109173.
[48] ZHANG Y, LIU H, HU Q. Transfuse: Fusing transformers
and cnns for medical image segmentation[C]//Medical
image
computing
and
computer
assisted
intervention–MICCAI 2021: 24th international conference,
Strasbourg, France, September 27–October 1, 2021,
proceedings, Part I 24. Springer, 2021: 14-24.
[49] MANZARI O N, KALEYBAR J M, SAADAT H, etal.
BEFUnet: A Hybrid CNN-Transformer Architecture for
Precise Medical Image Segmentation[EB/OL]. arXiv,
2024[2025-04-10]. http://arxiv.org/abs/2402.08793.
[50] ZHANG Q, JIANG Z, LU Q, etal. Split to be slim: an
overlooked
redundancy
convolution[C]//Proceedings
International
Conference
on
in
of
the
International
vanilla
Twenty-Ninth
Joint
Conferences on Artificial Intelligence. 2021: 3195-3201.
[51] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for
activation functions[J]. arXiv preprint arXiv:1710.05941,
2017.
[52] HOWARD A G. Mobilenets: Efficient convolutional
neural networks for mobile vision applications[J]. arXiv
preprint arXiv:1704.04861, 2017.
[53] BIAN C, XIA N, YANG X, etal. Mambaclinix:
Hierarchical gated convolution and mamba-based u-net for
enhanced 3d medical image segmentation[J]. arXiv
preprint arXiv:2409.12533, 2024.
[54] CHEN Y, YU L, WANG J Y, etal. Adaptive
Region-Specific Loss for Improved Medical ImageSegmentation[J]. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023, 45(11): 13408-13421.
[55] FICK T, VAN DOORMAAL J A, TOSIC L, etal. Fully
automatic brain tumor segmentation for 3D evaluation in
augmented reality[J]. Neurosurgical Focus, 2021, 51(2):
E14.
[56] WANG Z, ZHENG J Q, ZHANG Y, etal. Mamba-UNet:
UNet-Like Pure Visual Mamba for Medical Image
Segmentation[J]. CoRR, 2024.
[57] LIU J, YANG H, ZHOU H Y, etal. Swin-umamba:
Mamba-based
unet
with
imagenet-based
pretraining[C]//International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer,
2024: 615-625.
[58] RUAN J, XIANG S. VM-UNet: Vision Mamba UNet for
Medical Image Segmentation[J]. CoRR, 2024. |