[1] Cerasuolo F, Nascita A, Bovenzi G, et al. MEMENTO:
A novel approach for class incremental learning of enc
rypted traffic[J]. Computer Networks, 2024, 245: 11037
4.
[2] 顾玥,李丹,高凯辉.基于机器学习和深度学习的网络流量
分类研究[J].电信科学, 2021, 037(003):105-113.
GU Yue, LI Dan, GAO Kaihui. Research on network t
raffic classification based on machine learning and dee
p learning[J]. Telecommunications Science, 2021, 37(3):
105-113.
[3] Ericsson, Ericsson mobility report, 2024, https://www.eri
csson.com/49ed78/assets/local/reports-papers/mobility-repor
t/documents/2024/ericsson-mobility-report-june-2024.pdf.
Accessed: 2024-06.
[4] H. Singh, Performance Analysis of Unsupervised Machi
ne Learning Techniques for Network Traffic Classificati
on, 2015 Fifth International Conference on Advanced C
omputing & Communication Technologies, Haryana, Indi
a, 2015, pp. 401-404.
[5] 王方玉,张建辉,卜佑军,等. 基于无监督机器学习的网络
流量分类研究综述[J]. 信息工程大学学报, 2020, 21(6):
705-710.
Wang Fangyu, Zhang Jianhui, Bu Youjun, et al. A Sur
vey on Unsupervised Machine Learning for Network Tr
affic Classification[J]. Journal of Information Engineerin
g University, 2020, 21(6): 705-710.
[6] Wang Z X, Li Z Y, Fu M Y, et al. Network traffic cl
assification based on federated semi-supervised learning
[J]. Journal of Systems Architecture, 2024, 149: 10309
1.
[7] Wang W, Zhu M, Zeng X, et al. Malware traffic classi
fication using convolutional neural network for represent
ation learning[C]//2017 International conference on infor
mation networking (ICOIN). IEEE, 2017: 712-717.
[8] Jin Z, Qian J, Kong Z, et al. A mobility aware networ
k traffic prediction model based on dynamic graph atte
ntion spatio-temporal network[J]. Computer Networks, 2
023, 235: 109981.
[9] 潘成胜,李志祥,杨雯升,等. 基于二次特征提取和BiLSTM
-Attention 的网络流量异常检测方法 [J]. 电子与信息学
报, 2023, 45 (12): 4539-4547.
Chengsheng Pan, Zhixiang Li, Wensheng Yang, et al.
A Network Traffic Anomaly Detection Method Based o
n Secondary Feature Extraction and BiLSTM-Attention
[J]. Journal of Electronics & Information, 2023, 45 (1
2): 4539-4547.
[10] van de Ven G M, Soures N, Kudithipudi D. Continua
l learning and catastrophic forgetting[J]. arxiv preprint a
rxiv:2403.05175, 2024.
[11] Chen, Yige, et al. Incremental learning for mobile enc
rypted traffic classification. ICC 2021-IEEE International
Conference on Communications. IEEE, 2021.
[12] Mahdavi E, Fanian A, Mirzaei A, et al. ITL-IDS: Inc
remental transfer learning for intrusion detection systems
[J]. Knowledge-based systems, 2022, 253: 109542.
[13] Cai W, Hou C, Cui M, et al. Incremental encrypted t
raffic classification via contrastive prototype networks[J].
Computer Networks, 2024, 250: 110591.
[14] Pekar A, Makara L A, Biczok G. Incremental federate
d learning for traffic flow classification in heterogeneou
s data scenarios[J]. Neural Computing and Applications,
2024, 36(32): 20401-20424.
[15] Hwang, Ren Hung, et al. An LSTM-Based Deep Lear
ning Approach for Classifying Malicious Traffic at the
Packet Level. Applied Sciences 9.16(2019):3414.
[16] Liu C, He L, Xiong G, et al. Fs-net: A flow sequenc
e network for encrypted traffic classification[C]//IEEE I
NFOCOM 2019-IEEE Conference On Computer Commu
nications. IEEE, 2019: 1171-1179. [17] Wang Y, Yun X, Zhang Y, et al. A multi-scale feature
attention approach to network traffic classification and
its model explanation[J]. IEEE Transactions on Network
and Service Management, 2022, 19(2): 875-889.
[18] Li H, Wang Z, Meng H, et al. Solving the data imba
lance problem in network intrusion detection: A MP-CV
AE based method[C]//2022 10th International Workshop
on Signal Design and Its Applications in Communicati
ons (IWSDA).0[2023-09-18].
[19] Xu Y, Cao J, Song K, et al. FastTraffic: A lightweigh
t method for encrypted traffic fast classification[J]. Com
puter Networks, 2023, 235: 109965.
[20] Parisi G I, Kemker R, Part J L, et al. Continual Lifel
ong Learning with Neural Networks: A Review[J]. Neur
al Networks, 2018.
[21] Zhu, Wenbin, et al. ILETC: Incremental learning for e
ncrypted traffic classification using generative replay an
d exemplar. Computer Networks 224 (2023): 109602.
[22] Jodelet Q, Liu X, Phua Y J, et al. Class-incremental l
earning using diffusion model for distillation and replay
[C]//Proceedings of the IEEE/CVF International Confere
nce on Computer Vision. 2023: 3425-3433.
[23] Liu H, Yan Z, Liu B, et al. Distilled meta-learning fo
r multi-class incremental learning[J]. ACM Transactions
on Multimedia Computing, Communications and Applica
tions, 2023, 19(4): 1-16.
[24] Kumar S, Sharma A, Shokeen V, et al. Meta-learning
for real-world class incremental learning: a transformer
-based approach[J]. Scientific Reports, 2024, 14(1): 230
92.
[25] Zhou D W, Ye H J, Zhan D C, et al. Revisiting Clas
s-Incremental Learning with Pre-Trained Models: Genera
lizability and Adaptivity are All You Need[J]. ArXiv, 2
023.
[26] Zhang W, **e Y, Zhang Z, et al. Isolation and Integr
ation: A Strong Pre-trained Model-Based Paradigm for
Class-Incremental Learning[C]//International Conference
on Computational Visual Media. Singapore: Springer Na
ture Singapore, 2024: 302-315.
[27] Zhao, Ziming, et al. Trident: A Universal Framework
for Fine-Grained and Class-Incremental Unknown Traffic
Detection. Proceedings of the ACM on Web Conferenc
e 2024.
[28] Fu Y, Li X, Li X, et al. Clustering unknown network
traffic with dual-path autoencoder[J]. Neural Computing
and Applications, 2023, 35(12): 8955-8966.
[29] 韩纪东, 李玉鑑.神经网络模型中灾难性遗忘研究的综
述[J]. 北京工业大学学报, 2021.
HAN Jidong, LI Yujian. Survey of Catastrophic Forgeti
ng Research in Neural Network Models[J]. Journal of
Beijing University of Technology, 2021.
[30] Wen Y, Zhang K, Li Z, et al. A discriminative featur
e learning approach for deep face recognition[C]//Comp
uter Vision–ECCV 2016: 14th European Conference, A
msterdam, The Netherlands, October 11–14, 2016, Proce
edings, Part VII 14. Springer International Publishing, 2
016: 499-515.
[31] Rebuffi S A, Kolesnikov A, Sperl G, et al. icarl: Incr
emental classifier and representation learning[C]//Proceed
ings of the IEEE conference on Computer Vision and P
attern Recognition. 2017: 2001-2010.
[32] Li Z, Hoiem D. Learning without forgetting[J]. IEEE
transactions on pattern analysis and machine intelligence,
2017, 40(12): 2935-2947.
[33] Kirkpatrick J, Pascanu R, Rabinowitz N, et al. Overco
ming catastrophic forgetting in neural networks[J]. Proce
edings of the national academy of sciences, 2017, 114(1
3): 3521-3526.
[34] Xu X, Zhang X, Zhang Q, et al. Advancing malware
detection in network traffic with self-paced class incre
mental learning[J]. IEEE Internet of Things Journal, 202
4.
|