[1] 周伟林, 杨芫, 徐明伟. 网络功能虚拟化技术研究
综述[J]. 计算机研究与发展, 2018, 55(04): 675-688.
ZHOU W L, YANG Y, XU M W. A Survey of Network
Function Virtualization Technologies[J]. Journal of
Computer Research and Development, 2018, 55(4):
675–688. (in Chinese)
[2] LU J, CHEN H, ZHANG Z. LUSketch: A fast and
precise sketch for top-k finding in data streams[C]//2022
International Conference on Computer Communications
and Networks (ICCCN). IEEE, 2022: 1-10.
[3] 戴冕, 程光, 周余阳. 软件定义网络的测量方法研
究[J]. 软件学报, 2019, 30(06): 1853-1874.
DAI M, CHENG G, ZHOU Y Y. Research on Measurement Methods in Software-Defined Networking[J].
Journal of Software, 2019, 30(6): 1853–1874. (in Chinese)
[4] CURTIS A, MOGUL J, TOURRILHES J, et al.
DevoFlow: Scaling flow management for
high-performance networks[C]//Proceedings of the ACM
SIGCOMM 2011 Conference, 2011: 254-265.
[5] KABBANI A, ALIZADEH M, YASUDA M, et al.
AF-QCN: Approximate fairness with quantized congestion notification for multi-tenanted data centers[C]//2010
18th ieee symposium on high performance interconnects.
IEEE, 2010: 58-65.
[6] 苏凡军,牛咏梅,邵清. 数据中心网络快速反馈
传控制协议[J]. 计算机工程, 2015, 41(4): 107-111.
SU F J, NIU Y M, SHAO Q. Rapid Feedback Transmission Control Protocol for Data Center Networks[J].
Computer Engineering, 2015, 41(4): 107–111. (in Chinese)
[7] DEMAINE E, LOPEZ A, MUNRO J. Frequency estimation of internet packet streams with limited
space[C]//European Symposium on Algorithms. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002: 348-360.
[8] 林耘森箫, 毕军, 周禹. 基于 P4 的可编程数据平
面 研 究 及 其 应 用 [J]. 计算机学 报 , 2019, 42(11)
2539-2560.
LIN Y S X, BI J, ZHOU Y. Research and Application of
P4-Based Programmable Data Plane[J]. Chinese Journal
of Computers, 2019, 42(11): 2539–2560. (in Chinese)
[9] METWALLY A, AGRAWAL D, EL A A. Efficient
computation of frequent and top-k elements in data
streams[C]//International conference on database theory.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005:
398-412. [10] MANKU G S, MOTWANI R. Approximate frequency counts over data streams[C]//VLDB'02: Proceedings of the 28th International Conference on Very
Large Databases. Morgan Kaufmann, 2002: 346-357.
[11] BASAT R B, EINZIGER G, FRIEDMAN R, et al.
Randomized admission policy for efficient top-k and
frequency estimation[C]//IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE, 2017:
1-9.
[12] YANG T, JIANG J, et al. Elastic sketch: Adaptive
and fast network-wide measurements[C]//Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, 2018: 561-575.
[13] CORMODE G, MUTHUKRISHNAN S. An improved data stream summary: the count-min sketch and
its applications[J]. Journal of Algorithms, 2005, 55(1):
58-75.
[14] TANG L, HUANG Q, LEE P P C. Mv-sketch: A fast
and compact invertible sketch for heavy flow detection
in network data streams[C]//IEEE INFOCOM
2019-IEEE Conference on Computer Communications.
IEEE, 2019: 2026-2034.
[15] ZHOU Y, JIN H, LIU P, et al. Accurate per-flow
measurement with bloom sketch[C]//IEEE INFOCOM
2018-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2018: 1-2.
[16] LI J, LI Z, XU Y, et al. Wavingsketch: An unbiased
and generic sketch for finding top-k items in data
streams[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020: 1574-1584.
[17] ZHANG Y, LIU Z, WANG R, et al. CocoSketch:
High-performance sketch-based measurement over arbitrary partial key query[C]//Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021: 207-222.
[18] ZHOU Y, YANG T, JIANG J, et al. Cold filter: A
meta-framework for faster and more accurate stream
processing[C]//Proceedings of the 2018 International
Conference on Management of Data, 2018: 741-756.
[19] LI Y, WANG F, YU X, et al. Ladderfilter: Filtering
infrequent items with small memory and time overhead[J]. Proceedings of the ACM on Management of
Data, 2023, 1(1): 1-21.
[20] HUANG J, ZHANG W, LI Y, et al. ChainSketch: An
efficient and accurate sketch for heavy flow detection[J].
IEEE/ACM Transactions on Networking, 2022, 31(2):
738-753.
[21] SIVARAMAN A, SUBRAMANIAN S, ALIZADEH
M, et al. Programmable packet scheduling at line
rate[C]//Proceedings of the 2016 ACM SIGCOMM
Conference, 2016: 44-57.
[22] LI S, HUANG J, ZHANG W, et al. PA-Sketch: A
Fast and Accurate Sketch for Differentiated Flow Estimation[C]//2023 IEEE 31st International Conference on
Network Protocols (ICNP). IEEE, 2023: 1-11.
[23] LAKHINA A, CROVELLA M, DIOT C. Characterization of network-wide anomalies in traffic
flows[C]//Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, 2004: 201-206.
[24] HU Z, REN H, SHI P. Synchronization of complex
dynamical networks subject to noisy sampling interval
and packet loss[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(8): 3216-3226.
[25] POWERS D M W. Applications and explanations of
Zipf’s law[C]//New methods in language processing and
computational natural language learning, 1998.
[26] http://www.caida.org/data/overview/.
[27] http://mawi.wide.ad.jp/mawi/.
[28] A. Appleby. https://github.com/aappleby/smhasher.
[29] Ye J, Li L, Zhang W, et al. Ua-sketch: An accurate
approach to detect heavy flow based on uninterrupted
arrival[C]//Proceedings of the 51st International Conference on Parallel Processing. 2022: 1-11.
[30] CHARIKAR M, CHEN K, FARACH-COLTON M.
Finding frequent items in data streams[C]//International
Colloquium on Automata, Languages, and Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002:
693-703
|