[1] 中国科技论文统计与分析课题组. 2022 年中国科技论文计与分析简报[J]. 中国科技期刊研究, 2024, 35(01):
95-103.
Research group of statistics and analysis on Chinese
scientific papers. A brief report of statistics and analysis
on Chinese scientific papers in 2022[J]. Chinese Journal of
Scientific and Technical Periodicals, 2024, 35(1): 95-103.
[2] 张雨卉. 基于《中国图书馆分类法》的文献自动化深层
分类的研究和实现[J]. 图书馆杂志, 2024, 43(03): 61-74.
ZHANG Y. A Study of Automated Deep Classification of
Literature Based on Chinese Library Classification[J].
Library Journal, 2024, 43(03): 61-74.
[3] 徐江玲, 陈兴荣. 基于层级图标签表示网络的多标签文
本分类[J]. 计算机应用研究, 2024, 41(02): 388-392+407.
XU J, CHEN X. Multi-label text classification based on
hierarchical graph label representation network [J].
Application Research of Computers, 2024, 41 (2):
388-392,407.
[4] KHURANA D, KOLI A, KHATTER K, et al. Natural
language processing: state of the art, current trends and
challenges[J]. Multimedia Tools and Applications, 2023,
82(3): 3713-3744.
[5] WANG K, DING Y, HAN S C. Graph neural networks for
text classification: a survey[J]. Artificial Intelligence
Review, 2024, 57(8): 190.
[6] AKUMA S, LUBEM T, ADOM I T. Comparing Bag of
Words and TF-IDF with different models for hate speech
detection from live tweets[J]. International Journal of
Information Technology, 2022, 14(7): 3629-3635.
[7] JOHNSON S J, MURTY M R, NAVAKANTH I. A
detailed review on word embedding techniques with
emphasis on word2vec[J]. Multimedia Tools and
Applications, 2024, 83(13): 37979-38007.
[8] ISLAM S, ELMEKKI H, ELSEBAI A, et al. A
comprehensive survey on applications of transformers for
deep learning tasks[J]. Expert Systems with Applications,
2024, 241: 122666.
[9] 丁恒, 任卫强, 曹高辉. 基于无监督图神经网络的学术
文献表示学习研究[J]. 情报学报, 2022, 41(01): 62-72.
DING H, REN W, CAO G. Using Unsupervised Graphs of
Neural Networks for Constructing Learning
Representations of Academic Papers. Journal of the China
Society for Scientific and Technical Information, 2022,
41(1): 62-72.
[10] REN Z. VGCN: An enhanced graph convolutional network
model for text classification[J]. Journal of Industrial
Engineering and Applied Science, 2024, 2(4): 110-115.
[11] HE L, BAI L, YANG X, et al. High-order graph attention
network[J]. Information Sciences, 2023, 630: 222-234.
[12] LIANG Q, WANG W, BAO F, et al. Lˆ2GC: Lorentzian
linear graph convolutional networks for node
classification[C]//Proceedings of the 2024 Joint
International Conference on Computational Linguistics,
Language Resources and Evaluation, Torino, May, 2024.
Torino: ELRA and ICCL, 2024: 9988–9998.
[13] 岑科廷, 沈华伟, 曹婍, 等. 图对比学习综述[J]. 中文
信息学报, 2023, 37(05): 1-21.
CEN K, SHEN H, CAO Q, et al. A Survey on Graph
Contrastive Learning. Journal of Chinese Information
Processing, 2023, 37(5): 1-21.
[14] 沈立力, 姜鹏, 王静. 基于 BERT 模型的中文期刊文献
自动分类实践研究[J]. 图书馆杂志, 2022, 41(05):
109-118+135.
SHEN L, JIANG P, WANG J. A Study on the Automatic
Classification of Chinese Literature in Periodicals Based
on BERT Model[J]. Library Journal, 2022, 41(5): 109-118.
[15] LIAO W, LIU Z, DAI H, et al. Mask-guided BERT for
few-shot text classification[J]. Neurocomputing, 2024, 610:
128576.
[16] 刘江峰, 林立涛, 刘畅, 等. 深度学习驱动的海量人文
社会科学学术文献学科分类研究[J]. 情报理论与实践,
2023, 46(02): 71-81.
LIU J, LIN L, LIU C, et al. Study on the Discipline
Classification of Massive Humanities and Social Science
Academic Literature Driven by Deep Learning[J].
Information studies: Theory & Application. 2023, 46(2):
71-81.
[17] 陈帅朴, 钱宇星, 钱志强,等. 多重特征关联和图注意力
网络融合的文献分类方法研究——以中文医学文献为
例[J]. 情报学报, 2024, 43(04): 470-490.
CHEN S, QIAN Y, QIAN Z, et al. Research on Literature
Classification Methods Based on Multiple Feature
Correlation and a Graph Attention Network Model: A
Case Study of Chinese Medical Literature[J]. Journal of
the China Society for Scientific and Technical Information,
2024, 43(4): 470-490.
[18] 王静静, 叶鹰, 王婉茹. ChatGPT 类 AI-GPT 技术应用对
图书馆信息处理的变革探析[J]. 图书馆理论与实践,
2024, (01): 122-127+136.
WANG J, YE Y, WANG W. ChatGPT-Type AI-GPT
Technical Applications for Changing Library InformationProcessing Library Theory and Practice[J]. 2024, (01):
122-127+136.
[19] 罗文, 王厚峰. 大语言模型评测综述[J]. 中文信息学报,
2024, 38(01): 1-23.
LUO W, WANG H. Evaluating Large Language Models: A
Survey of Research Progress[J]. Journal of Chinese
Information Processing, 2024, 38(1): 1-23.
[20] 罗鹏程, 王继民, 聂磊. 基于生成式大语言模型的文献
资源自动分类研究[J]. 情报理论与实践, 2024, 47(12):
174-182.
LUO P, WANG J, NIE L. Research on Automatic
Classification of Literature Resources Based on
Generative Large Language Model[J]. Information studies:
Theory & Application. 2024, 47(12): 174-182.
[21] TANG J, YANG Y, WEI W, et al. Graphgpt: Graph
instruction tuning for large language
models[C]//Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in
Information Retrieval. New York: ACM, 2024: 491-500.
[22] WU G, LIN S, SHAO X, et al. Qpgcn: graph convolutional
network with a quadratic polynomial filter for overcoming
over-smoothing[J]. Applied Intelligence, 2023, 53(6):
7216-7231.
[23] WU L, LIN H, HU B, et al. Beyond homophily and
homogeneity assumption: Relation-based frequency
adaptive graph neural networks[J]. IEEE Transactions on
Neural Networks and Learning Systems, 2023, 35(6):
8497-8509.
[24] CHEN T, KORNBLITH S, NOROUZI M, et al. A Simple
Framework for Contrastive Learning of Visual
Representations[C]//Proceedings of the 37th International
Conference on Machine Learning. New York: PMLR,
2020: 1597-1607.
[25] YANG Z, COHEN W, SALAKHUTDINOV R. Revisiting
semi-supervised learning with graph
embeddings[C]//Proceedings of the 33rd International
Conference on International Conference on Machine
Learning. New York: JMLR, 2016, 48: 40-48.
[26] YUAN L, JIANG P, HOU W, et al. G-MLP: Graph
Multi-Layer Perceptron for Node Classification Using
Contrastive Learning[J]. IEEE Access, 2024, 12:
104909-104919.
[27] LIU Z, WANG Y, VAIDYA S, et al. Kan:
Kolmogorov-arnold networks[EB/OL]. (2025-01-20).
https://arxiv.org/abs/2404.19756.
[28] LIU C, ZHAN Y, MA X, et al. 2023. Gapformer: Graph
Transformer with Graph Pooling for Node
Classification[C]//Proceedings of the 32th International
Joint Conference on Artificial Intelligence. San Francisco:
Morgan Kaufmann, 2023: 2196-2205.
[29] KIM D, OH A. How to find your friendly neighborhood:
graph attention design with
self-supervision[C]//Proceedings of the 2021 International
Conference on Learning Representations. OpenReview.net,
2021: 1-25.
[30] KIAMARI M, KIAMARI M, KRISHNAMACHARI B.
GKAN: Graph Kolmogorov-arnold Networks[EB/OL].
(2025-01-20). https://arxiv.org/abs/2406.06470.
[31] ZHANG H, WU Q, WANG Y, et al. Localized Contrastive
Learning on Graphs[EB/OL]. (2025-03-30).
https://arxiv.org/abs/2212.04604
[32] TANG Q, ZHAO Y, WU H, et al. Adversarial Cluster-Level
and Global-Level Graph Contrastive Learning for node
representation[J]. Knowledge-Based Systems, 2023, 279:
110935.
|