[1] WANG Z, FOK K W, THING V L L. Machine learni
ng for encrypted malicious traffic detection: Approach
es, datasets and comparative study[J]. Computers & S
ecurity, 2022, 113: 102542.
[2] ISINGIZWE D F, WANG M, LIU W, et al. Analyzin
g learning-based encrypted malware traffic classificatio
n with automl[C]//2021 IEEE 21st International Confer
ence on Communication Technology (ICCT). Tianjin,
China: IEEE, 2021: 313-322.
[3] LIN K, XU X, GAO H. TSCRNN: A novel classifica
tion scheme of encrypted traffic based on flow spatiot
emporal features for efficient management of IIoT[J].
Computer Networks, 2021, 190: 107974.
[4] PAPADOGIANNAKI E, IOANNID S. A survey on en
crypted network traffic analysis applications, technique
s, and countermeasures[J]. ACM Computing Surveys
(CSUR), 2021, 54(6): 1-35.
[5] 陈子涵, 程光, 徐子恒, 等. 互联网加密流量检测、分类
与识别研究综述[J]. 计算机学报, 2023, 46(05):1060-10
85.
CHEN Zihan, CHENG Guang, XU Ziheng, et al. A s
urvey on inter-net encrypted traffic detection, classifica
tion and identification[J]. Chinese Journal of Computer
s, 2023, 46(5): 1060-1085.
[6] 康鹏, 杨文忠, 马红桥. TLS 协议恶意加密流量识别研
究综述[J]. 计算机工程与应用, 2022, 58(12):1-11.
KANG Peng, YANG Wenzhong, MA Hongqiao. TLS
malicious encrypted traffic identification research[J]. C
omputer Engineering and Applications, 2022, 58(12):1
11.
[7] 侯剑, 鲁辉, 刘方爱, 等. 加密恶意流量检测及对抗综
述[J]. 软件学报, 2024, 35(01): 333-355.
HOU Jian, LU Hui, LIU Fangai, et al. Overview of e
ncrypted malicious traffic detection and countermeasur
es[J]. Journal of Software, 2024, 35(01): 333-355.
[8] 付钰, 刘涛涛, 王坤, 等. 基于机器学习的加密流量分
类研究综述[J]. 通信学报, 2025, 46(01): 167-191.
FU Yu, LIU Taotao, WANG Kun, et al. Survey of re
search on encrypted traffic classification based on mac
hine learning[J]. Journal on Communications, 2025, 20
25, 46(01): 167-191.
[9] SHEKHAWA A S, DI Troia F, STAMP M. Feature an
alysis of encrypted malicious traffic[J]. Expert Systems
with Applications, 2019, 125: 130-141.
[10] ANDERSON B, MCGREW D. Identifying encrypted
malware traffic with contextual flow data[C]//Proceedin
gs of the 2016 ACM workshop on artificial intelligen
ce and security. New York, USA:ACM, 2016: 35-46.
[11] WENG Z, CHEN T, ZHU T, et al. TLSmell: Direct i
dentification on malicious https encryption traffic with
simple connection-specific indicators[J]. Computer Sys
tems Science & Engineering, 2021, 37(1): 105-119.
[12] YU T, ZOU F T, LI L, et al. An encrypted malicious
traffic detection system based on neural network[C]//
2019 Inter-national Conference on Cyber-Enabled Distr
ibuted Computing and Knowledge Discovery (CyberC).
Guilin, China: IEEE, 2019: 62-70.
[13] CHEN L, GAO S, LIU B, et al. THS-IDPC: A three
stage hierarchical sampling method based on improved
density peaks clustering algorithm for encrypted mali
cious traffic detection[J]. The Journal of Supercomputi
ng, 2020, 76: 7489-7518.
[14] LIU J, ZENG Y, SHI J, et al. Maldetect: A structure
of encrypted malware traffic detection[J]. Computers,
Materials and Continua, 2019, 60(2): 721-739.
[15] WANG W, ZHU M, ZENG X, et al. Malware traffic
classification using convolutional neural network for re
presentation learning[C]//2017 International conference
on in-formation networking (ICOIN). Da Nang, Vietna
m: IEEE, 2017: 712-717.
[16] ZHU S, XU X, GAO H, et al. CMTSNN: A deep le
arning model for multi-classification of abnormal and
encrypted traffic of Internet of Things[J]. IEEE Intern
et of Things Journal, 2023, 10(13): 11773-11791.
[17] 蒋彤彤, 尹魏昕, 蔡冰, 等. 基于层次时空特征与多头
注意力的恶意加密流量识别[J]. 计算机工程, 2021, 47
(7): 101-108.
JAING Tongtong, YIN Weixin, CAI Bing, et al. Encr
ypted malicious traffic identification based on hierarchi
cal spatiotemporal feature and multi-head attention[J].
Computer Engineering, 2021, 47(7):101-108.
[18] LIN X, XIONG G, GOU G, et al. ET-BERT: A conte
xtualized datagram representation with pre-training tran
sformers for encrypted traffic classification[C]//Proceedi
ngs of the ACM Web Conference 2022. New York, U
SA:ACM, 2022: 633-642.
[19] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-tr
aining of deep bidirectional transformers for language
understanding[C]//Proceedings of the 2019 conference
of the North American chapter of the association for
computational linguistics: human language technologies,
volume 1 (long and short papers). Minneapolis, USA:
ACL, 2019: 4171-4186.
[20] 赵键锦, 李祺, 刘胜利, 等. 面向 6G 流量监控:基于图
神经网络的加密恶意流量检测方法[J]. 中国科学:信息
科学, 2022, 52(2): 270-286.
ZHAO Jianjin, LI Qi, LIU Shengli, et al. Towards tra
ffic supervision in 6G: a graph neural network-based
encrypted malicious traffic detection method. Sci Sin I
nform, 2022, 52(2): 270-286.
[21] ACETO G, CIUONZO D, MONTIERI A, et al. DIST
ILLER: Encrypted traffic classification via multi-modal
multitask deep learning[J]. Journal of Network and C
omputer Applications, 2021, 183: 102985.
[22] BADER O, LICHY A, HAJAJ C, et al. MalDIST: Fr
om encrypted traffic classification to malware traffic d
etection and classification[C]//2022 IEEE 19th annual
consumer communications & networking conference (C
CNC). Las Vegas, USA: IEEE, 2022: 527-533.
[23] 谷勇浩, 徐昊, 张晓青. 基于多粒度表征学习的加密恶
意流量检测[J]. 计算机学报, 2023, 46(09): 1888-1899.
GU Yonghao, XU Hao, ZHANG Xiaoqing. Multi-gran
ularity representation learning for encrypted malicious
traffic detection[J]. Chinese Journal of Computers, 202
3, 46(9):1888-1899.
[24] SHEN M, YE K, LIU X, et al. Machine learning-po
wered encrypted network traffic analysis: a comprehen
sive survey[J]. IEEE Communications Surveys & Tuto
rials, 2022, 25(1): 791-824.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Atte
ntion Is All You Need[C]// Advances in neural inform
ation processing systems. USA: Curran Associates Inc.
2017: 6000–6010
[26] HE H Y, YANG Z G, CHEN X N. PERT: Payload e
ncoding representation from transformer for encrypted
traffic classification[C]//2020 ITU Kaleidoscope: Indust
ry-Driven Digital Transformation (ITU K). Ha Noi, Vi
etnam: IEEE, 2020: 1-8.
[27] WU Y, SCHUSTER M, CHEN Z, et al. Google's neu
ral machine translation system: Bridging the gap betw
een human and machine translation[J]. arXiv preprint
arXiv:1609.08144, 2016.
[28] HE H Y, YANG Z G, CHEN X N. PERT: Payload e
ncoding representation from transformer for encrypted
traffic classification[C]//2020 ITU Kaleidoscope: Indust
ry-Driven Digital Transformation (ITU K). Ha Noi, Vi
etnam: IEEE, 2020: 1-8.
[29] SHARMA A, KREIBICH C, WALA F B, et al. Zeek
[CP/OL].[2024-06-27]. https://download.zeek.org/zeek-6.
0.4.tar.gz.
[30] KADAVATH S, CONERLY T, ASKELL A, et al. Lan
guage models (mostly) know what they know[J]. arXi
v preprint arXiv:2207.05221, 2022.
[31] NETO E C P, DADKHAH S, FERREIRA R, et al. C
I-CIoT2023: A real-time dataset and benchmark for lar
ge-scale attacks in IoT environment[J]. Sensors, 2023,
23(13): 5941.
[32] VAN Ede T, BORTOLAMEOTTI R, CONTINELLA A,
et al. Flowprint: Semi-supervised mobile-app fingerpri
nting on encrypted network traffic[C]//Network and dis
tributed system security symposium (NDSS). San Dieg
o, USA: NDSS, 2020, 27.
[33] SHARAFALDIN I, LASHKAR I A H, GHORBANI A
A. Toward generating a new intrusion detection datase
t
and intrusion traffic characterization[J]. ICISSp, 2018,
1: 108-116.
[34] LIU C, WANG W, WANG M, et al. An efficient inst
ance selection algorithm to reconstruct training set for
support vector machine[J]. Knowledge-Based Systems,
2017, 116: 58-73.
[35] NKORO E C, NWAKANMA C I, LEE J M, et al. D
etecting cyberthreats in Metaverse learning platforms u
sing an explainable DNN[J]. Internet of Things, 2024,
25: 101046.
|