[1] LI Y, HSIEH C Y LU R, et al. An adaptive graph learning method for automated molecular interactions and properties predictions[J] Nature Machine Intelligence, 2022, 4(7): 645-651.
[2] LIU Y, DUO L, HIRST J D, et al. Three-branch molecular representation learning framework for predicting molecular properties in drug discovery[C]//Proceedings of the 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC). Tokyo, Japan: IEEE, 2024: 1983-1989.
[3] 蔡瑞初, 许遵鸿, 陈道鑫, 杨振辉, 李梓健, 郝志峰. 基于因果机制的分子属性预测[J]. 计算机工程, 2025, 51(3): 105-112.
RUICHU CAI, ZUNHONG XU, DAOXIN CHEN, ZHENHUI YANG, ZIJIAN LI, ZHIFENG HAO. Causal structural-based molecular property prediction[J]. Computer Engineering, 2025, 51(3): 105-112.
[4] 张超然. 基于伪孪生网络的分子性质预测模型研究[D]. 黑龙江大学, 2023.
ZHANG CHAORAN. Research on molecular property prediction model based on pseudo-siamese network[D]. Heilongjiang University, 2023.
[5] Yi H C, You Z H, Huang D S, et al. Graph representation learning in bioinformatics: trends, methods and applications[J]. Briefings in Bioinformatics, 2022, 23(1): bbab340.
[6] SHEN C, LUO J, XIA K. Molecular geometric deep learning[J]. Cell Reports Methods, 2023, 3(11): 100621-100635.
[7] MORIWAKI H, TIAN Y S, KAWASHITA N, et al. Mordred: a molecular descriptor calculator[J]. Journal of Cheminformatics, 2018, 10(4): 1-14.
[8] CAO D S, XIAO N, XU Q S, et al. Rcpi: r/bioconductor package to generate various descriptors of proteins, compounds and their interactions[J]. Bioinformatics, 2015, 31(2): 279-281.
[9] WEININGER D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. Journal of Chemical Information and Computer Sciences, 1988, 28(1): 31-36.
[10] SHEN W X, ZENG X, ZHU F, et al. Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations.[J] Nature Machine Intelligence, 2021, 3(4): 334-343.
[11] MANCUSO C A, JOHNSON K A, LIU R, et al. Joint representation of molecular networks from multiple species improves gene classification[J]. PLOS Computational Biology, 2024, 20(1): e1011773.
[12] JIANG J, ZHANG R, ZHAO Z, et al. MultiGran-SMILES: multi-granularity SMILES learning for molecular property prediction[J]. Bioinformatics, 2022, 38(19): 4573-4580.
[13] LV Q, CHEN G, ZHAO L, et al. Mol2Context-vec: learning molecular representation from context awareness for drug discovery[J]. Briefings in Bioinformatics, 2021, 22(6): bbab317.
[14] LI Z, JIANG M, WANG S, et al. Deep learning methods for molecular representation and property prediction[J]. Drug Discovery Today, 2022, 27(12): 103373.
[15] JIANG X, TAN L, ZOU Q. DGCL: dual-graph neural networks contrastive learning for molecular property prediction[J]. Briefings in Bioinformatics, 2024, 25(6): bbae474.
[16] HE G, LIU S, LIU Z, et al. Prototype-based contrastive substructure identification for molecular property prediction[J]. Briefings in Bioinformatics, 2024, 25(6): bbae565.
[17] LIU C, SUN Y, DAVIS R, et al. ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction[J]. Journal of Cheminformatics, 2023, 15(1): 29-43.
[18] LIU S, QU M, ZHANG Z, et al. Structured multi-task learning for molecular property prediction[C]//Proceedings of the 2022 International Conference on Artificial Intelligence and Statistics(AISTATS). Valencia, Spain: PMLR, 2022: 8906-8920.
[19] JIANG S, BALAPRAKASH P. Graph neural network architecture search for molecular property prediction[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data). Georgia, USA: IEEE, 2020: 1346-1353.
[20] WITHNALL M, LINDELÖF E, ENGKVIST O, et al. Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction[J]. Journal of Cheminformatics, 2020, 12(1): 1-18.
[21] WU Z, JIANG D, HSIEH C Y, et al. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method[J]. Briefings in Bioinformatics, 2021, 22(5): bbab112.
[22] CAI H, ZHANG H, ZHAO D, et al. FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction[J]. Briefings in Bioinformatics, 2022, 23(6): bbac408.
[23] ZHU W, ZHANG Y, ZHAO D, et al. HiGNN: a hierarchical informative graph neural network for molecular property prediction equipped with feature-wise attention[J]. Journal of Chemical Information and Modeling, 2022, 63(1): 43-55.
[24] ZALIANI, A, et al. On the art of compiling and using 'drug-like' chemical fragment spaces[J]. Journal of Medicinal Chemistry, 2009, 52(3): 775-784.
[25] DURANT J L, LELAND B A, HENRY D R, et al. Reoptimization of MDL keys for use in drug discovery[J]. Journal of Chemical Information and Computer Sciences, 2002, 42(6): 1273-1280.
[26] WANG C, WANG L, YU H, et al. Machine learning for layer-by-layer nanofiltration membrane performance prediction and polymer candidate exploration[J]. Chemosphere, 2024, 350: 140999.
[27] ILNICKA A, SCHNEIDER G. Compression of molecular fingerprints with autoencoder networks[J]. Molecular Informatics, 2023, 42(6): 2300059.
[28] 向君.图神经网络在分子属性预测中的技术研究[D]. 重庆大学, 2023.
XIANG JUN. Study on molecular property prediction based on graph neural network[D]. Chongqing University, 2023.
[29] WANG J, HUANG G, ZHONG G, et al. Qgd-Net: a lightweight model utilizing pixels of affinity in feature layer for dermoscopic lesion segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(12): 5982-5993.
[30] LEI X, PAN H, HUANG X. A dilated CNN model for image classification[J]. IEEE Access, 2019, 7: 124087-124095.
[31] WU Z, RAMSUNDAR B, FEINBERG E N, et al. MoleculeNet: a benchmark for molecular machine learning[J]. Chemical Science, 2018, 9(2): 513-530.
[32] XIONG Z, WANG D, LIU X, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism[J]. Journal of Medicinal Chemistry, 2019, 63(16): 8749-8760.
[33] LIU Y, FAN Q, XU C, et al. GDMol: generative double‐masking self‐supervised learning for molecular property prediction[J]. Molecular Informatics, 2024, 44(1): e202400146.
[34] D. HUANG, S. TU. MulMol: transformer-based multi-task molecular representation learning[C]//Proceedings of the 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Lisbon, Portugal: IEEE, 2024: 681-686
[35] J. LI, W. DU, Y. WANG. MolCLW: molecular contrastive learning with learnable weighted substructures[C]//Proceedings of the 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Lisbon, Portugal: IEEE, 2024: 828-831. |