[1] Li S, Xiao T, Li H, et al. Person search with natural
language description[C]//Proceedings of the IEEE
conference on computer vision and pattern recognition.
2017: 1970-1979.
[2] Han X, Zhong X, Huang W, et al. (2024). See What You
Seek: Semantic Contextual Integration for
Cloth-Changing Person Re-Identification[J]. arXiv
preprint arXiv: 2412.01345, 2024.
[3] Radford A, Kim J W, Hallacy C, et al. Learning
transferable visual models from natural language
supervision[C]//International conference on machine
learning. PMLR, 2021: 8748-8763.
[4] Li J, Selvaraju R, Gotmare A, et al. Align before fuse:
Vision and language representation learning with
momentum distillation[J]. Advances in neural information
processing systems, 2021, 34: 9694-9705.
[5] Li J, Li D, Xiong C, et al. Blip: Bootstrapping
language-image pre-training for unified vision-language
understanding and generation[C]//International conference
on machine learning. PMLR, 2022: 12888-12900.
[6] Jiang D, Ye M. Cross-modal implicit relation reasoning
and aligning for text-to-image person
retrieval[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023:
2787-2797.
[7] Yan S, Dong N, Zhang L, et al. Clip-driven fine-grained
text-image person re-identification[J]. IEEE Transactions
on Image Processing, 2023.
[8] Liu Y, Li Y, Liu Z, et al. CLIP-based Synergistic
Knowledge Transfer for Text-based Person
Retrieval[C]//ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2024: 7935-7939.
[9] Sun J, Fei H, Zheng Z, et al. From Data Deluge to Data
Curation: A Filtering-WoRA Paradigm for Efficient
Text-based Person Search[J]. arXiv preprint
arXiv:2404.10292, 2024.
[10] Yang S, Zhou Y, Zheng Z, et al. Towards unified
text-based person retrieval: A large-scale multi-attribute
and language search benchmark[C]//Proceedings of the
31st ACM International Conference on Multimedia. 2023:4492-4501.
[11] Khattak M, Rasheed H, Maaz M, et al. MaPLe:
Multi-modal Prompt Learning.[C]// Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022: 19113-19122.
[12] He K, Fan H, Wu Y, et al. Momentum contrast for
unsupervised visual representation learning[C]//
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020: 9729-9738.
[13] Oord A, Li Y, Vinyals O. Representation learning with
contrastive predictive coding[J]. arXiv preprint
arXiv:1807.03748, 2018.
[14] Ding Z, Ding C, Shao Z, et al. Semantically self-aligned
network for text-to-image part-aware person
re-identification[J]. arXiv preprint arXiv:2107.12666,
2021.
[15] Zhu A, Wang Z, Li Y, et al. Dssl: Deep
surroundings-person separation learning for text-based
person retrieval[C]//Proceedings of the 29th ACM
international conference on multimedia. 2021: 209-217.
[16] Zheng Z, Zheng L, Garrett M, et al. Dual-path
convolutional image-text embeddings with instance
loss[J]. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 2020, 16(2):
1-23.
[17] 姜定,叶茫.面向跨模态文本到图像行人重识别的
Transformer 网 络 [J]. 中 国 图 象 图形学
报,2023,28(05):1384-1395.
Jiang Ding, Ye Mang. Transformer network for
cross-modal text-to-image person re-identification[J].
Journal of Image and Graphics,2023,28(05):1384-1395.
[18] Yan S, Dong N, Liu J, et al. Learning comprehensive
representations with richer self for text-to-image person
re-identification[C]//Proceedings of the 31st ACM
international conference on multimedia. 2023: 6202-6211.
[19] Wang Z, Zhu A, Xue J, et al. Caibc: Capturing all-round
information beyond color for text-based person
retrieval[C]//Proceedings of the 30th ACM international
conference on multimedia. 2022: 5314-5322.
[20] 王晋溪,鲁鸣鸣.基于场景图知识的文本到图像行人重识
别 [J]. 模 式 识 别 与 人 工 智
能,2024,37(11):947-959.DOI:10.16451/j.cnki.issn1003-60
59.202411001.
WANG Jinxi, LU Mingming.Scene Graph Knowledge
Based Text-to-Image Person Re-identification[J]. Pattern
Recognition and Artificial
Intelligence,2024,37(11):947-959.DOI:10.16451/j.cnki.iss
n1003-6059.202411001.
[21] Bai Y, Cao M, Gao D, et al. Rasa: Relation and sensitivity
aware representation learning for text-based person
search[J]. arXiv preprint arXiv:2305.13653, 2023.
[22] Lin D, Peng Y X, Meng J, et al. Cross-modal adaptive
dual association for text-to-image person retrieval[J].
IEEE Transactions on Multimedia, 2024, 26: 6609-6620.
[23] Ye M, Shen J, Lin G, et al. Deep learning for person
re-identification: A survey and outlook[J]. IEEE
transactions on pattern analysis and machine intelligence,
2021, 44(6): 2872-2893.
[24] Chen Y, Zhang G, Lu Y, et al. TIPCB: A simple but
effective part-based convolutional baseline for text-based
person search[J]. Neurocomputing, 2022, 494: 171-181.
[25] Fujii T, Tarashima S. Bilma: Bidirectional local-matching
for text-based person re-identification[C]//Proceedings of
the IEEE/CVF International Conference on Computer
Vision. 2023: 2786-2790.
[26] Qin Y, Chen Y, Peng D, et al. Noisy-correspondence
learning for text-to-image person
re-identification[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
2024: 27197-27206.
[27] Cao M, Bai Y, Zeng Z, et al. An empirical study of clip for
text-based person search[C]//Proceedings of the AAAI
Conference on Artificial Intelligence. 2024, 38(1):
465-473.
[28] Ergasti A, Fontanini T, Ferrari C, et al. MARS: Paying
more attention to visual attributes for text-based person
search[J]. arXiv preprint arXiv:2407.04287, 2024.
[29] Deng Y, Hu Z, Han J, et al. DualFocus: A Unified
Framework for Integrating Positive and Negative
Descriptors in Text-based Person Retrieval[J]. arXiv
preprint arXiv:2405.07459, 2024.
|