[1] VINYALS O, TOSHEV A, BENGIO S, et al. Show and
tell: a neural image caption generator[C]//Proceedings of
the IEEE/CVF conference on computer vision and
recognition.2015:3156-3164.
[2] JING B Y, XIE P T, XING E. On the automatic
of medical imaging reports[C]//Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics. 2018:2577-2586.
[3] ZHANG Z, XIE Y, XING F, et al. Mdnet: a semantically
and visually interpretable medical image diagnosis
network[C]//Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017:6428–
6436.
[4] SHIN H C, ROBERTS K, LU L, DEMNNERFUSHMAN
D, et al. Learning to read chest x-rays: recurrent neural
cascade model for automated image
annotation[C]//Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016:2497–
2506.
[5] LIU F L, YIN C, WU X, et al. Contrastive attention for
automatic chest x-ray report generation[C]//Findings of
the Association for Computational
Linguistics:ACL-IJCNLP. 2021:269-280.
[6] LI Y, LIANG X, HU Z, et al. Hybrid retrieval-generation
reinforced agent for medical image report
generation[C]//Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018. 2018:1537–1547.
[7] CHEN Z, SONG Y, CHANG T, et al. Generating
radiology reports via memory-driven
transformer[C]//Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing.
2020:1439–1449.
[8] CHEN Z, SHEN Y, SONG Y, et al. Cross-modal memory
networks for radiology report
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language
Processing.2021:5904-5914.
[9] 邢素霞,方俊泽,鞠子涵等.基于记忆驱动的多模态医学
影像报告自动生成研究[J]. 生物医学工程学杂志,
2024, 41(1): 60-69.
XING S X, FANG J Z,JU Z H, et al. Research on
automatic generation of multimodal medical image
reports based on memory driven[J]. Journal of
Biomedical Engineering, 2024, 41(1): 60-69(in Chinese).
[10] 沈秀轩,吴春雷,冯叶棋等.基于双分支特征融合的医学
报告生成方法 [J]. 计 算 机 工 程 , 2023, 49(6):
274-283,291.
SHEN X X,WU C L,FENG Y Q, et al. Medical Report
Generation Method Based on Dual-Branch Feature
Fusion[J]. Computer Engineering, 2023, 49(6):
274-283,291.(in Chinese).
[11] HOU W, XU K, CHENG Y, et al. Organ:
observation-guided radiology report generation via tree
reasoning[C]//Proceedings of the 61st Annual Meeting of
the Association for Computational
Linguistics.2023:8108-8122.
[12] SONG X, ZHANG X, JI J, et al. Cross-modal contrastive
attention model for medical report
generation[C]//Proceedings of the 29th International
Conference on Computational Linguistics.
2022:2388-2397.
[13] LIU F, WU X, GE S, et al. Exploring and distilling
posterior and prior knowledge for radiology report
generation[C]//Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2021.
[14] JIN H B, CHE H X, LIN Y, et al. PromptMRG:
diagnosis-driven prompts for medical report
generation[C]//In Proceedings of the Thirty-Eighth
AAAI Conference on Artificial
Intelligence.2024,38:2607-2615.
[15] KIRILLOV A, MINTUN E, RAVI N, et al. Segment
anything[J]. arXiv preprint arXiv:2304.02643.
[16] HE K, ZHANG X, REN S, et al. Deep residual learning
for image recognition[C]//Proceedings of the IEEE
conference on computer vision and pattern recognition.
2016:770-778.
[17] JAIN S, AGRAWAL A, SAPORTA A, et al. Radgraph:
extracting clinical entities and relations from radiology
report[J]. arXiv preprint arXiv:2106.14463.
[18] VASWANI A. Attention is all you need[C]// Advances in
Neural Information Processing Systems, 2017.
[19] REINERS N, GUREVYCH I. Sentence-Bert: sentence
embeddings using Siamese
BERT-networks[C]//Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).
2019:3982-3992.
[20] LI J, HU Y, TAO H. A self-guided framework for
radiology report generation[C]//International Conference
on Medical Image Computing and Computer-Assisted
Intervention.2022:588-598.
[21] DEMNNERFUSHMAN D, KOHLI M, ROSENMAN M,
et al. Preparing a collection of radiology examinations
for distribution and retrieval[J]. Journal of the American
Medical Informatics Association. 2016, 23(2):304-310.
[22] JOHNSON A, POLLARD T, BERKOWITZ S, et al.
MIMIC-CXR: A large publicly available database of
labeled chest radiographs[J]. arXiv preprint
arXiv:1901.07042.
[23] PAPINENI K, ROUKOS S, WARD T, et al. Bleu: a
method for automatic evaluation of machine
translation[C]//Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics.
2002:311-318.
[24] LIN C. ROUGE: A package for automatic evaluation of
summaries[C]//Text Summarization Branches Out.
2004:74-81.
[25] BANERJEE S, LAVIE A. METEOR: An automatic
metric for MT evaluation with improved correlation with
human judgments[C]//Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization. 2005:65-72.
[26] DENG J, DONG W, SOCHER R, et al. ImageNet: A
large-scale hierarchical image database[C]//IEEE
Conference on Computer Vision and PatternRecognition.2009:248-255.
[27] LOSHCHILOV I, HUTTER F. Decoupled weight decay
regularization[C]//7th International Conference on
Learning Representations. 2019.
[28] YANG Y, YU J, ZHANG J, et al. Joint embedding of
deep visual and semantic features for medical image
report generation[J]. IEEE Transactions on Multimedia,
2021, 25: 167-178.
[29] ZHANG J, SHEN X, WAN S, et al. A novel deep
learning model for medical report generation by
inter-intra information calibration[J]. IEEE Journal of
Biomedical and Health Informatics, 2023, 27:
5110-5121.
[30] YANG X, WU X, GE S, et al. Radiology report
generation with a learned knowledge base and
multi-modal alignment[J]. Medical Image Analysis, 2023,
86:102798.
[31] ZHANG K, JIANG H, ZHANG J, et al. Semi-supervised
medical report generation via graph-guided hybrid
feature consistency[J]. IEEE Transactions on Multimedia,
2023, 26: 904-915.
[32] WANG Z, LIU L, Wang L, et al. R2GenGPT: Radiology
Report Generation with frozen LLMs[J].
Meta-Radiology, 2023, 1(3): 100033.
[33] JIN Y, CHEN W, TIAN Y, et al. Improving radiology
report generation with d2-net: When diffusion meets
discriminator[C]//IEEE International Conference on
Acoustics, Speech and Signal
Processing.2024:2215-2219.
[34] LIU Z, ZHU Z, ZHENG S, et al. From observation to
concept: A flexible multi-view paradigm for medical
report generation[J]. IEEE Transactions on Multimedia,
2024, 26: 5987-5995.
[35] CHEN W, LIU Y, WANG C, et al. Cross-Modal Causal
Intervention for Medical Report Generation[J].arXiv
preprint arXiv:2303.09117.
[36] WANG X, WANG F, Wang B, et al. Activating
associative disease-aware vision token memory for
llm-based x-ray report generation[J].arXiv preprint
arXiv:2501.03458.
[37] TU T, AZIZI S, DRIESS D, et al. Towards Generalist
Biomedical AI[J].arXiv preprint arXiv:2307.14334.
|