[1]
[2]
[3]
[4]
[5]
[6]
Amosa T I, Sebastian P, Izhar L I, et al. Multi-camera
multi-object tracking: A review of current trends and
future advances[J]. Neurocomputing, 2023, 552: 126558.
李奕炜, 骆立实, 赵波, 等. 基于 YOLO v8 算法的变
电 站视频监控多目标智能跟踪方法[J].
Telecommunications Science, 2025, 41(3).
Li Y W, Luo L S, Zhao B, et al. Multi-target intelligent
tracking method for substation video surveillance based on
YOLO v8 algorithm [J]. Telecommunications Science,
2025, 41(3).
Gragnaniello D, Greco A, Saggese A, et al. Benchmarking
2D multi-object detection and tracking algorithms in
autonomous vehicle driving scenarios[J]. Sensors, 2023,
23(8): 4024.
Chiu H K, Wang C Y, Chen M H, et al. Probabilistic 3D
multi-object cooperative tracking for autonomous driving
via differentiable multi-sensor Kalman filter[C]//IEEE
International Conference on Robotics and Automation
(ICRA). Yokohama, Japan: IEEE, 2024: 18458-18464.
Zhou X, Chan S, Qiu C, et al. Multi-target tracking based
on a combined attention mechanism and occlusion sensing
in a behavior-analysis system[J]. Sensors, 2023, 23(6):
2956.
Li S, Schieber H, Corell N, et al. GBOT: Graph-based 3D
object tracking for augmented reality-assisted assembly
guidance[C]//IEEE Conference Virtual Reality and 3D
User Interfaces. Orlando, FL, USA: IEEE, 2024: 513-523.
[7]
[8]
[9]
Yang F, Choi W, Lin Y. Exploit all the layers: Fast and
accurate CNN object detector with scale dependent
pooling and cascaded rejection classifiers[C]//2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, USA: IEEE Computer Society,
2016: 2129-2137.
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards
real-time
object
detection with region proposal
networks[J]. IEEE transactions on pattern analysis and
machine intelligence, 2016, 39(6): 1137-1149.
Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO
series in 2021[J]. CoRR, 2021.
[10] Kuhn H W. The Hungarian method for the assignment
problem[J]. Naval Research Logistics (NRL), 2004, 52(1):
7-21.
[11] Zhang Y, Wang C, Wang X, et al. FairMOT: On the
fairness of detection and re-identification in multiple
object tracking[J]. International journal of computer vision,
2021, 129(11): 3069-3087.
[12] Sun P, Jiang Y, Zhang R, et al. TransTrack:
Multiple-object tracking with transformer[J]. CoRR, 2020.
[13] Meinhardt T, Kirillov A, Leal-Taixé L, et al. TrackFormer:
Multi-object tracking with transformers[C]//IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR). New Orleans, LA, USA: IEEE, 2022:
8834-8844.
[14] Cai J, Xu M, Li W, et al. Memot: Multi-object tracking
with
memory[C]//Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition.
New Orleans, LA, USA: IEEE, 2022: 8090-8100.
[15] Zeng F, Dong B, Zhang Y, et al. MOTR: End-to-end
multiple-object
tracking
with
transformer[C]//17th
European Conference on Computer Vision (ECCV). Tel
Aviv, Israel: Springer, 2022: 659-675.
[16] Xu Y, Ban Y, Delorme G, et al. TransCenter: Transformers
with dense representations for multiple-object tracking[J].
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023, 45(6): 7820-7835.
[17] Kim C, Li F, Alotaibi M, et al. Discriminative appearance
modeling with multi-track pooling for real-time
multi-object tracking[C]//IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Virtual: IEEE,
[1]
[2]
[3]
[4]
[5]
[6]
Amosa T I, Sebastian P, Izhar L I, et al. Multi-camera
multi-object tracking: A review of current trends and
future advances[J]. Neurocomputing, 2023, 552: 126558.
李奕炜, 骆立实, 赵波, 等. 基于 YOLO v8 算法的变
电 站视频监控多目标智能跟踪方法[J].
Telecommunications Science, 2025, 41(3).
Li Y W, Luo L S, Zhao B, et al. Multi-target intelligent
tracking method for substation video surveillance based on
YOLO v8 algorithm [J]. Telecommunications Science,
2025, 41(3).
Gragnaniello D, Greco A, Saggese A, et al. Benchmarking
2D multi-object detection and tracking algorithms in
autonomous vehicle driving scenarios[J]. Sensors, 2023,
23(8): 4024.
Chiu H K, Wang C Y, Chen M H, et al. Probabilistic 3D
multi-object cooperative tracking for autonomous driving
via differentiable multi-sensor Kalman filter[C]//IEEE
International Conference on Robotics and Automation
(ICRA). Yokohama, Japan: IEEE, 2024: 18458-18464.
Zhou X, Chan S, Qiu C, et al. Multi-target tracking based
on a combined attention mechanism and occlusion sensing
in a behavior-analysis system[J]. Sensors, 2023, 23(6):
2956.
Li S, Schieber H, Corell N, et al. GBOT: Graph-based 3D
object tracking for augmented reality-assisted assembly
guidance[C]//IEEE Conference Virtual Reality and 3D
User Interfaces. Orlando, FL, USA: IEEE, 2024: 513-523.
[7]
[8]
[9]
Yang F, Choi W, Lin Y. Exploit all the layers: Fast and
accurate CNN object detector with scale dependent
pooling and cascaded rejection classifiers[C]//2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, USA: IEEE Computer Society,
2016: 2129-2137.
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards
real-time
object
detection with region proposal
networks[J]. IEEE transactions on pattern analysis and
machine intelligence, 2016, 39(6): 1137-1149.
Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO
series in 2021[J]. CoRR, 2021.
[10] Kuhn H W. The Hungarian method for the assignment
problem[J]. Naval Research Logistics (NRL), 2004, 52(1):
7-21.
[11] Zhang Y, Wang C, Wang X, et al. FairMOT: On the
fairness of detection and re-identification in multiple
object tracking[J]. International journal of computer vision,
2021, 129(11): 3069-3087.
[12] Sun P, Jiang Y, Zhang R, et al. TransTrack:
Multiple-object tracking with transformer[J]. CoRR, 2020.
[13] Meinhardt T, Kirillov A, Leal-Taixé L, et al. TrackFormer:
Multi-object tracking with transformers[C]//IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR). New Orleans, LA, USA: IEEE, 2022:
8834-8844.
[14] Cai J, Xu M, Li W, et al. Memot: Multi-object tracking
with
memory[C]//Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition.
New Orleans, LA, USA: IEEE, 2022: 8090-8100.
[15] Zeng F, Dong B, Zhang Y, et al. MOTR: End-to-end
multiple-object
tracking
with
transformer[C]//17th
European Conference on Computer Vision (ECCV). Tel
Aviv, Israel: Springer, 2022: 659-675.
[16] Xu Y, Ban Y, Delorme G, et al. TransCenter: Transformers
with dense representations for multiple-object tracking[J].
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023, 45(6): 7820-7835.
[17] Kim C, Li F, Alotaibi M, et al. Discriminative appearance
modeling with multi-track pooling for real-time
multi-object tracking[C]//IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Virtual: IEEE,
2023: 9901-9910.
[40] Han X, Oishi N, Tian Y, et al. ETTrack: Enhanced
temporal motion predictor for multi-object tracking[J].
Applied Intelligence, 2025, 55(1): 33.
[41] Adzemovic M, Tadic P, Petrovic A, et al. Beyond Kalman
filters: Deep learning-based filters for improved object
tracking[J]. Machine Vision and Applications, 2025, 36(1):
20.
[42] Huang H W, Yang C Y, Chai W, et al. MambaMOT:
State-Space Model as Motion Predictor for Multi-Object
Tracking[C]//ICASSP 2025-2025 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2025: 1-5. |