[1] JI X, ZHAO Y, LU S, et al. Robot path tracking and
real-time obstacle avoidance under laser radar
technology[C]//2023 IEEE 5th International Conference
on Power, Intelligent Computing and Systems (ICPICS).
Shenyang, China: IEEE, 2023: 512-518.
[2] LI H, KINSNER W, WANG Y, et al. Airborne radar based
collision detection and avoidance system for unmanned
aircraft systems in a varying environment[C]//2021 IEEE
International Conference on Wireless for Space and
Extreme Environments (WiSEE). Cleveland, USA: IEEE,
2021: 43-48.
[3] YASIN J N, MOHAMED S A S, HAGHBAYAN M H, et
al. Low-cost ultrasonic based object detection and collision
avoidance method for autonomous robots[J]. International
Journal of Information Technology, 2021, 13: 97-107.
[4] YUE S, RIND F C. Collision detection in complex
dynamic scenes using an LGMD-based visual neural
network with feature enhancement[J]. IEEE Transactions
on Neural Networks, 2006, 17(3): 705-716.
[5] LI T, ZHAO Z, ZHU M, et al. Cable vector collision
detection algorithm for multi-robot collaborative towing
system[J]. Journal of Shanghai Jiaotong University
(Science), 2023: 1-11.
[6] WU J, LIAO Z, HAN Y, et al. An integral design for high
performance sensor-less collision detection of serial
robots[C]//2022 IEEE/ASME International Conference onAdvanced Intelligent Mechatronics (AIM). Sapporo, Japan:
IEEE, 2022: 1714-1721.
[7] HU B, ZHANG Z. Bio-inspired visual neural network on
spatio-temporal depth rotation perception[J]. Neural
Computing and Applications, 2021, 33(16): 10351-10370.
[8] HU B, ZHANG Z. Bio-plausible visual neural network for
spatio-temporally
spiral
motion
Neurocomputing, 2018, 310: 96-114.
perception[J].
[9] GRAZIANO M S A, COOKE D F. Parieto-frontal
interactions, personal space, and defensive behavior[J].
Neuropsychologia, 2006, 44(6): 845-859.
[10] ZHAO J, XI S, LI Y, et al. A fly inspired solution to
looming detection for collision avoidance[J]. IScience,
2023, 26(4): 106337.
[11] ZHANG Z, YUE S, ZHANG G. Fly visual system inspired
artificial
neural network for collision detection[J].
Neurocomputing, 2015, 153(8): 221-234.
[12] LI L, ZHANG Z, LU J. Artificial fly visual joint
perception neural network inspired by multiple-regional
collision detection[J]. Neural Networks, 2021, 135: 13-28.
[13] KATSAMPIRIS-SALGADO K, HANINGER K,
GKRIZIS C, et al. Collision detection for collaborative
assembly operations on high-payload robots[J]. Robotics
and Computer-Integrated Manufacturing, 2024, 87:
102708.
[14] SHI C, DONG Z, PUNDLIK S, et al. A hardware-friendly
optical
flow-based
time-to-collision
algorithm[J]. Sensors, 2019, 19(4): 807.
estimation
[15] XIN X, LIU K, YANG Z, et al. A probabilistic risk
approach for the collision detection of multi-ships under
spatiotemporal movement uncertainty[J]. Reliability
Engineering & System Safety, 2021, 215: 107772.
[16] TRACY K, HOWELL T A, MANCHESTER Z.
Differentiable collision detection for a set of convex
primitives[C]//2023 IEEE International Conference on
Robotics and Automation (ICRA). London, UK: IEEE,
2023: 3663-3670.
[17] MONTAUT L, LE LIDEC Q, BAMBADE A, et al.
Differentiable collision detection: a randomized smoothing
approach[C]//2023 IEEE International Conference on
Robotics and Automation (ICRA). London, UK: IEEE,
2023: 3240-3246.
[18] HEIBERG A, LARSEN T N, MEYER E, et al. Risk-based
implementation of COLREGs for autonomous surface
vehicles using deep reinforcement learning[J]. Neural
Networks, 2022, 152: 17-33.
[19] ALMUTAIRI M S, ALMUTAIRI K, CHIROMA H.
Hybrid of deep recurrent network and long short term
memory for rear-end collision detection in fog based
internet of vehicles[J]. Expert Systems with Applications,
2023, 213: 119033.
[20] ZHOU B, LI Z, KIM S, et al. Shallow neural networks
trained to detect collisions recover features of visual
loom-selective neurons[J]. Elife, 2022, 11: e72067.
[21] RILL R A, FARAGÓ K B. Collision avoidance using deep
learning-based monocular vision[J]. SN Computer Science,
2021, 2(5): 375.
[22] CHAN F H, CHEN Y T, XIANG Y, et al. Anticipating
accidents in dashcam videos[C]//Computer Vision–ACCV
2016: 13th Asian Conference on Computer Vision. Cham,
Switzerland: Springer, 2017: 136-153.
[23] BAO W, YU Q, KONG Y. Uncertainty-based traffic
accident anticipation with spatio-temporal relational
learning[C]//Proceedings of the 28th ACM International
Conference on Multimedia. New York, USA: ACM, 2020:
2682-2690.
[24] FU Q, WANG H, HU C, et al. Towards computational
models and applications of insect visual systems for
motion perception: A review[J]. Artificial Life, 2019, 25(3):
263-311.
[25] YAKUBOWSKI J M, MCMILLAN G A, GRAY J R.
Background visual motion affects responses of an insect
motion-sensitive neuron to objects deviating from a
collision course[J]. Physiological Reports, 2016, 4(10):
e12801.
[26] QIN Z, FU Q, PENG J. A computationally efficient and
robust looming perception model based on dynamic neural
field[J]. Neural Networks, 2024, 179: 106502.
[27] ZHENG Y, WANG Y, WU G, et al. Enhancing
LGMD-based model for collision prediction via binocular
structure[J]. Frontiers in Neuroscience, 2023, 17: 1247227.
[28] CHANG Z, FU Q, CHEN H, et al. A look into feedback
neural computation upon collision selectivity[J]. Neural
Networks, 2023, 166: 22-37.
[29] CHANG Z, FU Q, HUA M, et al. Feedback neural
computation in collision perception: Towards diverse
selectivity[J]. Neurocomputing, 2024, 598: 128110.
[30] FU Q, HU C, PENG J, et al. Shaping the collision
selectivity in a looming sensitive neuron model with
parallel on and off pathways and spike frequency
adaptation[J]. Neural Networks, 2018, 106: 127-143.
[31] LI J, SUN X, LI H, et al. On the ensemble of collision
perception
neuron
models
towards
ultra-selectivity[C]//2023 International Joint Conference
on Neural Networks (IJCNN). Gold Coast, Australia: IEEE,
2023: 1-8.
[32] FU Q, HU C, PENG J, et al. A robust collision perception
visual neural network with specific selectivity to darker
objects[J]. IEEE Transactions on Cybernetics, 2019,
50(12): 5074-5088.
[33] HONG J, FU Q, SUN X, et al. Boosting collision
perception against noisy signals with a probabilistic neural
network[C]//2023 International Joint Conference on
Neural Networks (IJCNN). Gold Coast, Australia: IEEE,
2023: 1-8.
[34] CHANG Z, CHEN H, HUA M, et al. A bio-inspired visual
collision detection network integrated with dynamic
temporal variance feedback regulated by scalable
functional countering jitter streaming[J]. Neural Networks,
2025, 182: 106882.
[35] 章盛, 郑胜男, 沈洁, 等. 果蝇嗅视神经通路研究综述
[J]. 电子与信息学报, 2024, 46(6): 2335-2351.
ZHANG S, ZHENG S N, SHEN J, et al. Review on
olfactory and visual neural pathways in drosophila[J].
Journal of Electronics & Information Technology, 2024,
46(6): 2335-2351.
[36] GRAZIANO M S A, HU X T, GROSS C G. Visuospatial
properties of ventral premotor cortex[J]. Journal of
Neurophysiology, 1997, 77(5): 2268-2292.
[37] WANG X Y, GONG X M, SUN Q, et al. Attractive effects
of previous form information on heading estimation from
optic flow occur at perceptual stage[J]. Journal of Vision,
2022, 22(12): 18.
[38] STRONG S L, SILSON E H, GOUWS A D, et al.
Differential processing of the direction and focus of
expansion of optic flow stimuli in areas MST and V3A of
the human visual cortex[J]. Journal of Neurophysiology,
2017, 117(6): 2209-2217.
[39] HUANG R, ERICSON S. An efficient way to estimate the
focus of expansion[C]//2018 IEEE 3rd International
Conference on Image, Vision and Computing (ICIVC).
Chongqing, China: IEEE, 2018: 691-695.
[40] HAHN J, MONAVARFESHANI A, QIAO M, et al.
Evolution of neuronal cell classes and types in the
vertebrate retina[J]. Nature, 2023, 624(7991): 415-424.
[41] SHEKHAR K, LAPAN S W, WHITNEY I E, et al.
Comprehensive classification of retinal bipolar neurons by
single-cell
transcriptomics[J].
1308-1323.
Cell,
2016, 166(5):
[42] 赵轻轻, 胡滨. 不变性全局稀疏轮廓点表征的运动行人
检测神经网络[J]. 计算机应用, 2025, 45(4): 1271-1284.
ZHAO Q Q, HU B. Moving pedestrian detection neural
network with invariant global sparse contour point
representation[J]. Journal of Computer Applications, 2025,
45(4): 1271-1284.
[43] VLASITS A L, EULER T, FRANKE K. Function first:
classifying cell types and circuits of the retina[J]. Current
Opinion in Neurobiology, 2019, 56: 8-15.
[44] WEST E R, CEPKO C L. Development and diversification
of bipolar interneurons in the mammalian retina[J].
Developmental Biology, 2022, 481: 30-42.
[45] 于世海, 胡滨. 生物启发的运动行人视觉不变性响应神
经网络[J/OL]. 计 算 机 科 学 : 1-22[2025-03-01].
http://kns.cnki.net/kcms/detail/50.1075.TP.20240913.0915.
006.html.
YU S H, HU B. Bio-inspired neural network with visual
invariant response to moving pedestrian[J/OL]. Computer
Science:
1-22[2025-03-01].
http://kns.cnki.net/kcms/detail/50.1075.TP.20240913.0915
.006.html.
[46] CALONDER M, LEPETIT V, STRECHA C, et al. Brief:
Binary
robust
independent
elementary
features[C]//Computer Vision–ECCV 2010: 11th European
Conference on Computer Vision. Berlin, Germany:
Springer, 2010: 778-792.
[47] SHAH A P, LAMARE J B, NGUYEN-ANH T, et al.
CADP: A novel dataset for CCTV traffic camera based
accident analysis[C]//2018 15th IEEE International
Conference on Advanced Video and Signal Based
Surveillance (AVSS). Auckland, New Zealand: IEEE,
2018: 1-9.
[48] MOURA D C, ZHU S, ZVITIA O. Nexar dashcam
collision prediction dataset and challenge[J]. arXiv
preprint arXiv:2503.03848, 2025.
[49] GEIGER A, LENZ P, URTASUN R. Are we ready for
autonomous driving? the kitti vision benchmark
suite[C]//2012 IEEE Conference on Computer Vision and
Pattern Recognition. Providence, USA: IEEE, 2012:
3354-3361.
[50] TEMIZER I, DONOVAN J C, BAIER H, et al. A visual
pathway for looming-evoked escape in larval zebrafish[J].
Current Biology, 2015, 25(14): 1823-1834.
[51] WANG Y, GONG Y, HUANG S, et al. Memristor-based
biomimetic compound eye for real-time collision
detection[J]. Nature Communications, 2021, 12(1): 5979.
|