[1] Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for fine-grained visual recognition[C]//Proce-edings of the IEEE international conference on co-mputer vision. 2015: 1449-1457.
[2] Fu J, Zheng H, Mei T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of -the IEEE conference on computer vision and patte-rn recognition. 2017: 4438-4446.
[3] Zhang N, Donahue J, Girshick R, et al. Part-basedR-CNNs for fine-grained category detection[C]//Co-mputer Vision–ECCV 2014: 13th European Confere-nce, Zurich, Switzerland, September 6-12, 2014, Pr-oceedings, Part I 13. Springer International Publish-ing, 2014: 834-849.
[4] Wei X S, Wang P, Liu L, et al. Piecewise classify-er mappings: Learning fine-grained learners for no-vel categories with few examples[J]. IEEE Transact-ions on Image Processing, 2019, 28(12): 6116-6125.
[5] Tang H, Yuan C, Li Z, et al. Learning attention-g-uided pyramidal features for few-shot fine-grained -recognition[J]. Pattern Recognition, 2022, 130: 108792.
[6] Woo S, Park J, Lee J Y, et al. Cbam: Convolutio-nal block attention module[C]//Proceedings of the -European conference on computer vision (ECCV). -2018: 3-19.
[7] Feng H, Wang S, Ge S S. Fine-grained visual rec-ognition with salient feature detection[J]. arXiv pre-print arXiv:1808.03935, 2018.
[8] Shih K J, Mallya A, Singh S, et al. Part localizat-ion using multi-proposal consensus for fine-grained-categorization[J]. arXiv preprint arXiv:1507.06332,2-015.
[9] Zhu Y, Liu C, Jiang S. Multi-attention Meta Learn-ing for Few-shot Fine-grained Image Recognition[C]//IJCAI. 2020: 1090-1096.
[10] Liu C, Xie H, Zha Z J, et al. Filtration and distil-lation: Enhancing region attention for fine-grained -visual categorization[C]//Proceedings of the AAAI -conference on artificial intelligence. 2020, 34(07): -11555-11562.
[11] Wang C, Fu H, Ma H. Learning mutually exclusive-e part representations for fine-grained image classi-fication[J]. IEEE Transactions on Multimedia, 2023.
[12] 白尚旺, 王梦瑶, 胡静, 陈志泊. 多区域注意力的细粒 度图像分类网络[J]. 计算机工程, 2024, 50(1): 271-278. Shangwang BAI, Mengyao WANG, Jing HU, Zhibo CHEN. Multi-Region Attention Network for Fine-Grained Image Classification[J]. Computer Engineering, 2024, 50(1): 271-278
[13] Liu H, Chen C L P, Gong X, et al. Robust saliency--aware distillation for few-shot fine-grained visual reco-gnition[J]. IEEE Transactions on Multimedia, 2024.
[14] Alfassy A, Karlinsky L, Aides A, et al. Laso: Lab-el-set operations networks for multi-label few-shot -learning[C]//Proceedings of the IEEE/CVF conferen-ce on computer vision and pattern recognition. 201-9: 6548-6557.
[15] Chu W H, Li Y J, Chang J C, et al. Spot and le-arn: A maximum-entropy patch sampler for few-sh-ot image classification[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern re-cognition. 2019: 6251-6260.
[16] Schwartz E, Karlinsky L, Feris R, et al. Baby ste-ps towards few-shot learning with multiple semantic-cs[J]. Pattern Recognition Letters, 2022, 160: 142-147.
[17] Snell J, Swersky K, Zemel R. Prototypical networ-ks for few-shot learning[J]. Advances in neural inf-ormation processing systems, 2017, 30.
[18] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning[J]. Advances in ne-ural information processing systems, 2016, 29.
[19] Sung F, Yang Y, Zhang L, et al. Learning to com-pare: Relation network for few-shot learning[C]//Pr-oceedings of the IEEE conference on computer vis-ion and pattern recognition. 2018: 1199-1208.
[20] Li W, Wang L, Xu J, et al. Revisiting local descr-iptor based image-to-class measure for few-shot lea-rning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 7260-7268.
[21] Lifchitz Y, Avrithis Y, Picard S, et al. Dense class-ification and implanting for few-shot learning[C]//P-roceedings of the IEEE/CVF conference on comput-er vision and pattern recognition. 2019: 9258-9267.
[22] Finn C, Abbeel P, Levine S. Model-agnostic meta--learning for fast adaptation of deep networks[C]//I-nternational conference on machine learning. PMLR, 2017: 1126-1135.
[23] Antoniou A, Edwards H, Storkey A. How to train-your MAML[C]//International conference on learnin-g representations. 2018.
[24] Nguyen Q H, Nguyen C Q, Le D D, et al. Enhan-cing few-shot image classification with cosine tran-sformer[J]. IEEE Access, 2023, 11: 79659-79672.
[25] 许华杰,梁书伟.采用特征图增强原型的小样本图像分类方法[J].计算机科学与探索,2024,18(04):990-1000.
XU H J,LIANG S W. Few-Shot Image Classification Method with Feature Maps Enhancement Prototype[J]. Journal of Frontiers of Computer Science and Technol-ogy, 2024,18(04):990-1000.
[26] Li X, Wu J, Sun Z, et al. BSNet: Bi-similarity ne-twork for few-shot fine-grained image classification[J]. IEEE Transactions on Image Processing, 2020, 30: 1318-1331.
[27] Huang H, Zhang J, Zhang J, et al. Low-rank pair-wise alignment bilinear network for few-shot fine -grained image classification[J]. IEEE Transactions - on Multimedia, 2020, 23: 1666-1680.
[28] Tian S, Tang H, Dai L. Coupled patch similarity -network for one-shot fine-grained image recognitio-n[C]//2021 IEEE international Conference on Image Processing (ICIP). IEEE, 2021: 2478-2482.
[29] Zhao P, Li Y, Tang B, et al. Feature relocation ne-twork for fine-grained image classification[J]. Neur-al Networks, 2023, 161: 306-317.
[30] Ma Z X, Chen Z D, Zhao L J, et al. Cross-Layer and Cross-Sample Feature Optimization Network for Few-Shot Fine-Grained Image Classification[C]//Pr-oceedings of the AAAI Conference on Artificial In-telligence. 2024, 38(5): 4136-4144.
[31] Li W, Xu J, Huo J, et al. Distribution consistency based covariance metric networks for few-shot lear-ning[C]//Proceedings of the AAAI conference on ar-tificial intelligence. 2019, 33(01): 8642-8649.
[32] Wang C, Song S, Yang Q, et al. Fine-grained few shot learning with foreground object transformation[J]. Neurocomputing, 2021, 466: 16-26.
[33] Qi Y, Sun H, Liu N, et al. A task-aware dual sim-ilarity network for fine-grained few-shot learning[C]//Pacific Rim International Conference on Artificial Intelligence. Cham: Springer Nature Switzerland, 2022: 606-618.
[34] Song Q, Zhou S, Xu L. Learning More Discrimina-tive Local Descriptors for Few-shot Learning[J]. a-rXiv preprint arXiv:2305.08721, 2023.
[35] Yang Y, Feng Y, Zhu L, et al. Feature fusion net-work based on few-shot fine-grained classification[J]. Frontiers in Neurorobotics, 2023, 17: 1301192.
[36] Sun Z, Zheng W, Guo P. KLSANet: Key local se-mantic alignment Network for few-shot image class-ification[J]. Neural Networks, 2024: 106456.
[37] Wertheimer D, Tang L, Hariharan B. Few-shot clas-sification with feature map reconstruction networks[C]//Proceedings of the IEEE/CVF conference on c-omputer vision and pattern recognition. 2021: 8012-8021.
[38] Li X, Song Q, Wu J, et al. Locally-enriched cross-reconstruction for few-shot fine-grained image class-ification[J]. IEEE Transactions on Circuits and Sys-tems for Video Technology, 2023, 33(12): 7530-7540.
[39] Liu Y, Shao Z, Hoffmann N. Global attention mec-hanism: Retain information to enhance channel-spat-ial interactions[J]. arXiv preprint arXiv:2112.05561, 2021. |