[1] 曾泽凡,胡星辰,成清,等.基于预训练语言模型的知识图谱研究综述[J].计算机科学,2025,52(01):1-33.
ZENG Zefan, HU Xingchen, ChENG Qing, et al. Review of Knowledge Graph Research Based on Pre-trained Language Models [J]. Computer Science, 2025,52(01):1-33.
[2] 乔骥,王新迎,闵睿,等.面向电网调度故障处理的知识图谱框架与关键技术初探[J].中国电机工程学报,2020,40(18):5837-5849.
QIAO Ji, WANG Xinying, MIN Rui, et al. Knowledge graph framework and key technologies for power grid dispatching fault processing [J]. Proceedings of the CSEE, 2020,40(18):5837-5849.
[3] 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(03):582-600.
LIU Jiao, LI Yang, Duan Hong, et al. Overview of knowledge graph construction technology [J]. Computer Research and Development, 2016,53(03):582-600.
[4] XIAO Na, PENG Bai, LI Xin, et al. Research on the construction and implementation of power grid fault handling knowledge graphs[J]. Energy Reports,2023,9(S2):182-189.
[5] 吴瑕,赵小明,余建坤.轨迹图谱:一种基于知识图谱结构的轨迹信息抽取方法[J].计算机应用研究,2020,37(11):3255-3262.
WU Xia, ZHAO Xiaoming, YU Jiankun. Trajectory atlas: a method of trajectory information extraction based on knowledge atlas structure [J]. Applied Research of Computers,2020,37(11):3255-3262.
[6] LIN Yaoyang, CHEN Lv, XIAO Wang, et al. Collective entity alignment for knowledge fusion of power grid dispatching knowledge graphs[J].IEEE/CAA Journal of Automatica Sinica,2022,9(11):1990-2004.
[7] 赵维兴,熊楠,宁楠,等.基于多源信息融合的电网多层智能故障诊断方法[J].南方电网技术,2021,15(09):9-15.
ZHAO Weixing, XIONG Nan, NING Nan, et al. A Multi-Layer Intelligent Fault Diagnosis Method for Power Grids Based on Multi-Source Information Fusion[J]. Southern Power System Technology, 2021, 15(09): 9-15.
[8] 刘东,张越,皮俊波,等.面向电网调控信息智能检索的知识图谱构建及应用[J].中国电力,2023,56(07):78-84.
LIU Dong, ZHANG Yue, PI Junbo, et al. Construction and application of knowledge graph for intelligent retrieval of power grid regulation information [J]. Electric Power of China, 2023,56(07):78-84.
[9] 叶欣智,尚磊,董旭柱,等.面向配电网故障处置的知识图谱研究与应用[J].电网技术,2022,46(10):3739-3749.
YE Xinzhi, SHANG Lei, DONG Xuzhu, et al. Research and application of knowledge graph for distribution network fault handling [J]. Power Network Technology, 2022,46(10):3739-3749.
[10] FU Xinyu,KIING Irwin. MECCH: Metapath Context Convolution-based Heterogeneous Graph Neural Networks.[J].Neural networks : the official journal of the International Neural Network Society,2023,170266-275.
[11] Zheng xuan, Chen Jianying, Liu Xueji, et al. ‘What’ and ‘Where’ both matter: dual cross-modal graph convolutional networks for multimodal named entity recognition[J].International Journal of Machine Learning and Cybernetics,2023,Vol.15(6): 2399-2409.
[12] 彭勃,李耀东,龚贤夫,等.一种基于异构图神经网络和文本语义增强的实体关系抽取方法[J].计算机科学,2024,51(S1):268-272.
PENG Bo, LI Yaodong, GOONG Xianfu, et al. An entity relation extraction method based on heterogeneous graph neural networks and text semantic enhancement [J]. Journal of Computer Science, 2018,51(S1):268-272.
[13] 张顺淼,郑思源.融合异构图网络的多轮对话实体关系抽取[J].计算机工程与应用,2025,61(10):176-184.
ZHANG Shunmiao, ZHHENG Siyuan. Multi-round dialog entity Relation Extraction in Converged heterogeneous graph Networks [J]. Computer Engineering and Applications, 2025,61(10):176-184.
[14] 郑洁云, 张章煌, 宣菊琴, 等. 基于知识图谱和图卷积神经网络的配电网智能规划方法[J/OL]. 计算机工程, 1-15[2025-06-18]. https://doi.org/10.19678/j.issn.1000-3428.0069531.
ZHENG Jieyun, ZHANG Zhanhuang, XUAN Juqin, et al. Intelligent planning Method of distribution Network based on Knowledge Graph and Graph Convolutional neural Network [J/OL]. Computer Engineering, 1-15[2025-06-18]. https://doi.org/10.19678/j.issn.1000-3428.0069531.
[15] 林凌云,陈青,金磊,等.基于知识图谱的变电站告警信息故障知识表示研究与应用[J].电力系统保护与控制,2022,50(12):90-99.
LIN Lingyun, CHEN Qing, JIN Lei, et al. Research and Application of Fault Knowledge Representation for Substation Alarm Information Based on Knowledge Graph[J]. Power System Protection and Control, 2022, 50(12): 90 - 99.
[16] WANG Yan, ZHANG Ruochi, YANG Qian, et al. FairCare: Adversarial training of a heterogeneous graph neural network with attention mechanism to learn fair representations of electronic health records[J].Information Processing and Management,2024,61(3):103682-.
[17] WANG Bin, LIANG Pengfei, ZHANG Lijie, et al. Enhancing robustness of cross-machine fault diagnosis via an improved domain adversarial neural network and self-adversarial training[J].Measurement,2025,250117113-117113.
[18] AN Dongdong, YANG Yi, GAO Xin, et al. Reinforcement learning-based secure training for adversarial defense in graph neural networks[J]. Neurocomputing, 2025, 630129704-129704.
[19] 刘议丹,朱小飞,尹雅博.基于异质图卷积神经网络的论点对抽取模型[J].浙江大学学报(工学版),2024,58(05):900-907+1049.
LIU Yidan, ZHU Xiaofei, YIN Yabo. Argument pair extraction model based on heterogeneous graph Convolutional neural network [J]. Journal of Zhejiang University (Engineering Science), 2019,58(05):900-907+1049.
[20] SHI Zhenquan, ZHANG Wengjian, HUANG Jiashuang,et al.JLR-GCN: Joint label-aware and relation-aware graph convolution neural network for heterogeneous graph representations[J].Information Sciences,2025,706122011-122011.
[21] WU Wenhao, WANG Shudong, ZHANG Yuanyuan,et al. MOHGCN: A trustworthy multi-omics data integration framework based on specificity-aware heterogeneous graph convolutional neural networks for disease diagnosis[J].Expert Systems With Applications,2025,263125772-125772.
[22] 胡胜,张溪,刘登基,等.基于双向长短期记忆网络的纺纱工艺重用知识图谱构建[J].丝绸,2024,61(12):52-60.
Hu Sheng, Zhang Xi, Liu Dengji, et al. Construction of knowledge graph for spinning process reuse based on bidirectional long short-term memory network [J]. Silk, 2019,61(12):52-60.
[23] 吴汉瑜,严江,黄少滨等.用于文本分类的CNN-BiLSTM-Attention混合模型[J].计算机科学,2020,47(S2):23-27+34.
WU Hanyu, YAN Jiang, HUANG Shaobin et al. CNN-BiLSTM-Attention hybrid model for text classification [J]. Computer Science, 2019,47(S2):23-27+34.
[24] 周泽聿,王昊,赵梓博,等.融合关联信息的GCN文本分类模型构建及其应用研究[J].数据分析与知识发现,2021,5(09):31-41.
ZHOU Zeyu, WANG Hao, ZHAO Zibo,et al. Construction and application of GCN text classification model with association information [J]. Data Analysis and Knowledge Discovery, 21,5(09):31-41.
[25] JIE Hu, HONG Qunyang, FEI Teng, et al. A knowledge graph completion model based on triple level interaction and contrastive learning[J].Pattern Recognition, 2024,156110783-110783.
[26] Rik Koncel-Kedziorski,Dhanush Bekal,Yi Luan,Mirella Lapata,et al.Text Generation from Knowledge Graphs with Graph Transformers.[J].CoRR,2019,abs/1904.02342.
[27] 赵志影,邵新慧,林幸.用于方面情感分析的结合图卷积神经网络的注意力模型[J].中文信息学报,2022,36(07):154-163.
ZHAO Zhiying, SHAO Xinhui, LIN Xing. Attention Model Combined with Graph Convolutional Neural Network for Aspect Sentiment Analysis [J]. Journal of Chinese Information Processing, 2022, 36(07): 154-163.
[28] 李福民,王靖,刘小杰,等.基于CNN-GraphSAGE的风口图像多尺度提取与识别模型[J].钢铁,2025,60(01):40-50. LI Fumin, WANG Jing, LIU Xiaojie, et al. Multi-scale Extraction and Recognition Model of Air Intake Image Based on CNN-GraphSAGE [J]. Iron and Steel, 2025,60(01):40-50. |