[1]. 赵梦凡,张钰涛,赵铤钊.社交媒体假新闻检测:基本理论、方法及研究方向[J].软件导刊,2024,23(09):31-40.
ZHAO M, ZHANG Y, ZHAO T. Detection of Fake News on Social Media:Basic Theories,Methods and Research Prospects[J]. Software Guide, 2024,23(09):31-40.(in Chinese)
[2]. Yin S, Zhu P, Wu L, et al. GAMC: an unsupervised method for fake news detection using graph autoencoder with masking[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington, DC: AAAI Press.2024, 38(1): 347-355.
[3]. Zhou X, Zafarani R. Network-based fake news detection: A pattern-driven approach[J]. ACM SIGKDD explorations newsletter. New York, NY: ACM. 2019, 21(2): 48-60.
[4]. Min E, Rong Y, Bian Y, et al. Divide-and-conquer: Post-user interaction network for fake news detection on social media[C]//Proceedings of the ACM web conference 2022. New York, NY: ACM. 2022: 1148-1158.
[5]. Nguyen V H, Sugiyama K, Nakov P, et al. Fang: Leveraging social context for fake news detection using graph representation[C]//Proceedings of the 29th ACM international conference on information & knowledge management. New York, NY: ACM. 2020: 1165-1174.
[6]. Donabauer G, Kruschwitz U. Exploring fake news detection with heterogeneous social media context graphs[C]//European Conference on Information Retrieval. Cham: Springer Nature Switzerland, 2023: 396-405.
[7]. Zou A, Zhang Z, Zhao H. Decker: Double Check with Heterogeneous Knowledge for Commonsense Fact Verification[C]//Findings of the Association for Computational Linguistics: ACL 2023. Toronto, Canada: ACL.2023: 11891-11904.
[8]. Xu F, Zeng L, Zou B, et al. CLFFRD: Curriculum Learning and Fine-grained Fusion for Multimodal Rumor Detection[C]//Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Torino, Italia: ELRA and ICCL.2024: 3314-3324.
[9]. 朱枫,张廷辉,李鹏,等.基于多模态自适应融合的短视频虚假新闻检测[J].计算机科学,2024,51(11):39-46.
ZHU F,ZHANG T,LI P, et al. Multimodal Adaptive Fusion Based Detection of Fake News in Short Videos[J]. Computer Science, 2024,51(11):39-46.(in Chinese)
[10]. Kim J, Park S, Kwon Y, et al. FactKG: Fact Verification via Reasoning on Knowledge Graphs[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Toronto, Canada: ACL. 2023: 16190-16206.
[11]. Hu B, Sheng Q, Cao J, et al. Bad actor, good advisor: Exploring the role of large language models in fake news detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington, DC: AAAI Press. 2024, 38(20): 22105-22113.
[12]. Zhang L, Zhang X, Zhou Z, et al. Reinforced adaptive knowledge learning for multimodal fake news detection[C]//Proceedings of the AAAI conference on artificial intelligence. Washington, DC: AAAI Press.2024, 38(15): 16777-16785.
[13]. Whitehouse C, Weyde T, Madhyastha P, et al. Evaluation of fake news detection with knowledge-enhanced language models[C]//Proceedings of the international AAAI conference on web and social media. Washington, DC: AAAI Press.2022, 16: 1425-1429.
[14]. Zhao W, He P, Zeng Z, et al. Fake news detection based on knowledge-guided semantic analysis[J]. Electronics, 2024, 13(2): 259.
[15]. 周昊玮,刘勇,玄萍.基于预训练和多模态融合的假新闻检测[J].计算机工程,2024,50(01):289-295.DOI:10.19678/j.issn.1000-3428.0066412.
ZHOU H, LIU Y, XUAN P. Fake News Detection Based on Pre-Training and Multi-Modal Fusion[J].Conputer Engineering,2024,50(01):289-295.DOI:10.19678/j.issn.1000-3428.0066412.(in Chinese)
[16]. Kim J, Choi K. Unsupervised fact checking by counter-weighted positive and negative evidential paths in a knowledge graph[C]//Proceedings of the 28th international conference on computational linguistics. Barcelona, Spain: ICCL. 2020: 1677-1686.
[17]. Shiralkar P, Flammini A, Menczer F, et al. Finding streams in knowledge graphs to support fact checking[C]//2017 IEEE International Conference on Data Mining (ICDM). New Orleans, LA: IEEE, 2017: 859-864.
[18]. Gad-Elrab M H, Stepanova D, Urbani J, et al. Exfakt: A framework for explaining facts over knowledge graphs and text[C]//Proceedings of the twelfth ACM international conference on web search and data mining. New York, NY: ACM. 2019: 87-95.
[19]. Liu H, Wang W, Li H, et al. TELLER: A Trustworthy Framework for Explainable, Generalizable and Controllable Fake News Detection[C]//Findings of the Association for Computational Linguistics ACL 2024. Bangkok, Thailand: ACL. 2024: 15556-15583.
[20]. Malviya S, Katsigiannis S. Evidence Retrieval for Fact Verification using Multi-stage Reranking[C]//Findings of the Association for Computational Linguistics: EMNLP 2024. Miami, Florida: ACL. 2024: 7295-7308.
[21]. Yue Z, Zeng H, Shang L, et al. Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Bangkok, Thailand: ACL. 2024: 10331-10343.
[22]. Wu J, Guo J, Hooi B. Fake News in Sheep's Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks[C]//Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining. New York, NY: ACM. 2024: 3367-3378.
[23]. Ma X, Zhang Y, Ding K, et al. On Fake News Detection with LLM Enhanced Semantics Mining[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Miami, Florida: ACL. 2024: 508-521.
[24]. Huang L, Yu W, Ma W, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions[J]. ACM Transactions on Information Systems, 2025, 43(2): 1-55.
[25]. Huang Z, Yu P, Allan J. Improving cross-lingual information retrieval on low-resource languages via optimal transport distillation[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York, NY: ACM. 2023: 1048-1056.
[26]. Nouri N. Text style transfer via optimal transport[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Seattle, United States: ACL. 2022: 2532-2541.
[27]. Yu H T, Jatowt A, Joho H, et al. WassRank: Listwise document ranking using optimal transport theory[C]//Proceedings of the twelfth ACM international conference on web search and data mining. New York, NY: ACM. 2019: 24-32.
[28]. Yao X, Zhang Z, Hu X, et al. COTER: conditional optimal transport meets table retrieval[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York, NY: ACM.2024: 911-919.
[29]. Michel P, Levy O, Neubig G. Are sixteen heads really better than one?[J]. Advances in neural information processing systems, 2019, 32.
[30]. Scarlett J, Heckel R, Rodrigues M R D, et al. Theoretical perspectives on deep learning methods in inverse problems[J]. IEEE journal on selected areas in information theory, 2023, 3(3): 433-453.
[31]. Wang S, Li B Z, Khabsa M, et al. Linformer: Self-attention with linear complexity[J]. arXiv preprint arXiv:2006.04768, 2020.
[32]. Yang W, Yang J, Li W, et al. ConClue: Conditional Clue Extraction for Multiple Choice Question Answering[C]//International Conference on Document Analysis and Recognition. Cham, Germany: Springer Nature Switzerland, 2024: 183-198.
[33]. Cuturi M. Sinkhorn distances: Lightspeed computation of optimal transport[J]. Advances in neural information processing systems, 2013, 26:2292-2300.
[34]. Wang Y, Ma F, Jin Z, et al. Eann: Event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. New York, NY: ACM. 2018: 849-857.
[35]. Zhang X, Cao J, Li X, et al. Mining dual emotion for fake news detection[C]//Proceedings of the web conference 2021.New York, NY: ACM. 2021: 3465-3476.
[36]. Zhu Y, Sheng Q, Cao J, et al. Generalizing to the future: Mitigating entity bias in fake news detection[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM. 2022: 2120-2125.
[37]. Xu C, Xu Y, Wang S, et al. Small Models are Valuable Plug-ins for Large Language Models[C]//Findings of the Association for Computational Linguistics ACL 2024.Bangkok, Thailand. ACL. 2024: 283-294.
|