[1] Kim Y . Convolutional Neural Networks for Sentence Classification[J]. Eprint Arxiv, 2014.
[2] Elman J L . Finding Structure in Time[J]. Cognitive Science,1990, 14(2):179-211.
[3] Hochreiter S , Schmidhuber J . Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[4] RAHMAN S, CHAKRABORTY P.Bangla document classification using deep recurrent neural network with BiLSTM[C]//Proceedings of International Conference on Machine Intelligence and Data Science Applications, 2021.
[5] SAON G, TÜSKE Z, BOLANOS D, et al.Advancing RNN transducer technology for speech recognition[C]//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.
[6] ORUH J, VIRIRI S, ADEGUN A.Long short-term memory recurrent neural network for automatic speech recognition[J].IEEE Access, 2022,10:30069-30079.
[7] ASHENGO Y A, AGA R T, LEMMA ABEBE S.Context based machine translation with recurrent neural network for English-Amharic translation[J].Machine Translation, 2021,35(1):19-36.
[8] Siami-Namini S, Tavakoli N, Namin A S. The performance of LSTM and BiLSTM in forecasting time series [C]//IEEE International Conference on Big Data (Big Data), 2019: 3285-3292.
[9] 张怡,朱小伶,袁柳,郭晓雷,闫红艳.2024年人工智能芯片技术主要发展分析[J].无人系统技术,2025,8(01):108-116.
Zhang Y,Zhu X L,Yuan L,Guo X L,Yan H Y.Main Development Trends of Artificial Intelligence Chip Technology in 2024[J].Unmanned Systems Technology,2025,8(01):108-116.
[10] Paszke, Adam et al.PyTorch: An Imperative Style, High-Pe
rformance Deep Learning Library.[C]//Neural Information Pr
ocessing Systems (2019). Vancouver, Canada.
[11] 贾景龙,张沈习,李珂,等.基于ARIMA和HO-BiLSTM的变压
器监测数据清洗方法[J/OL].高电压技术,1-11[2025-06-12].htt
ps://doi.org/10.13336/j.1003-6520.hve.20241594.
Jia J L,Zhang S X,Li K,et al.Transformer Monitoring Data
Cleaning Method Based on ARIMA and HO-BiLSTM[J/O
L].High Voltage Engineering,1-11[2025-06-12].https://doi.org
/10.13336/j.1003-6520.hve.20241594.
[12] 徐健,胡博,邢作霞 & 张鹏飞.基于GCN-BiLSTM的非侵入式
负荷分解.南方电网技术,1-10.
Xv J,Hu B,Xing Z X &Zhang P F.Non-Intrusive Load
Disaggregation Based on GCN-BiLSTM.Southern Power
System Technology,1-10.
[13] Xuyi Cai, Ying Wang, and Lei Zhang. 2022. Optimus: An
Operator Fusion Framework for Deep Neural Networks. A
CM Trans. Embed. Comput. Syst. 22, 1, Article 1 (January
2023), 26 pages. https://doi.org/10.1145/3520142
[14] Yu Xing, Shuang Liang, Lingzhi Sui, Zhen Zhang, Jiantao
Qiu, Xijie Jia, Xin Liu, Yushun Wang, Yi Shan, and Yu
Wang. 2019. DNNVM: End-to-End compiler leveraging ope
ration fusion on FPGA-based CNN accelerators. In Proceedi
ngs of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. 187–188. https://doi.org/10.114
5/3289602.3293972
[15] Shixuan Zheng, Xianjue Zhang, Daoli Ou, Shibin Tang, L
eibo Liu, Shaojun Wei, and Shouyi Yin. 2020. Efficient sc
heduling of irregular network structures on CNN accelerator
s. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 39,11
(2020), 3408–3419. https://doi.org/10.1109/TCAD.2020.3012
215
[16] 高伟,王磊,李嘉楠,等.面向深度学习编译器TVM的算子融合
优化[J/OL].计算机科学,1-15[2025-03-24].http://kns.cnki.net/k
cms/detail/50.1075.tp.20240625.1611.030.html.
Gao W,Wang L,Li Y N,et al.Operator Fusion Optimization
for Deep Learning Compiler TVM[J/OL].Computer Scienc
e,1-15[2025-03-24].http://kns.cnki.net/kcms/detail/50.1075.tp.2
0240625.1611.030.html.
[17] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding and J. Sun,
"RepVGG: Making VGG-style ConvNets Great Again," 202
1 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Nashville, TN, USA, 2021, pp. 13728-13737, doi: 10.1109/CVPR46437.2021.01352.
[18] 胡玥,高庆狮,刘宏岚."一种优化BITONIC算法:“并行-优化
串行”合并和分类向量算法."计算机研究与发展 10(2002):13
07-1316.
Hu Y,Gao Q S,Liu H L.A PARALLEL-OPTIMAL-SEQUE
NTIAL VECTOR ALGORITHM FOR MERGING AND S
ORTIN.Journal of Computer Research and Development 10
(2002):1307-1316.
[19] X. Ding, X. Zhang, J. Han and G. Ding, "Diverse Branch
Block: Building a Convolution as an Inception-like Unit,"
2021 IEEE/CVF Conference on Computer Vision and Patter
n Recognition (CVPR), Nashville, TN, USA, 2021, pp. 108
81-10890, doi: 10.1109/CVPR46437.2021.01074. keywords:
{Training;Image segmentation;Costs;Convolution;Semantics;C
omputer architecture;Object detection},
[20] 于振华,王向前,吕亚飞.面向可重构AI芯片的编译框架设计
[J].单片机与嵌入式系统应用,2023,23(06):20-2
Yu Z H,Wang X Q,LV Y F.Compilation Framework Desig
n for Reconfigurable AI Chip[J].Microcontrollers & Embed
ded Systems,2023,23(06):20-2
[21] 宋鹤鸣.智能语音系统加速器设计[D].上海交通大学,2019
Song H M.DESIGN OF ACCELERATOR FOR VOICE IN
TELLIGENT SYSTEM[D].Shanghai Jiao Tong University,2
019
[22] Chang,H.;Ye,K. (2025). Research on Custom Algorithms an
d Hardware Accelerators Based on RISC-V Vector Extensio
ns and Image Processing. Applied and Computational Engin
eering,121,1-8.
[23] N. P. Jouppi et al., "In-datacenter performance analysis of
a tensor processing unit," 2017 ACM/IEEE 44th Annual Int
ernational Symposium on Computer Architecture (ISCA), T
oronto, ON, Canada, 2017, pp. 1-12, doi: 10.1145/3079856.
3080246.
[24] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and C
hristopher Ré. 2022. FLASHATTENTION: fast and memory-efficient exact attention with IO-awareness. In Proceedings
of the 36th International Conference on Neural Informatio
n Processing Systems (NIPS '22). Curran Associates Inc., R
ed Hook, NY, USA, Article 1189, 16344–16359
[25] Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. Empirical
Evaluation of Gated Recurrent Neural Networks on Seque
nce Modeling[J/OL]. ArXiv(2014), abs/1412.3555.
|