[1] ZHANG Q F, LI H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[2] LIANG J, BAN X X, YU K J, et al. A survey on evolutionary constrained multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(2): 201-221.
[3] JAN M A, TAIRAN N M, KHANUM R A, et a1. A new threshold-based penalty function embedded MOEA/D[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(2): 647-655.
[4] MALDONADO H M, ZAPOTECAS-MARTINEZ S. A dynamic penalty function within MOEA/D for constrained multi-objective optimization problems[C]//2021 IEEE Congress on Evolutionary Computation. Kraków Poland, 2021: 1470-1477.
[5] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[6] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.
[7] RUNARSSON, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. Evolutionary Computation, IEEE Transactions on, 2000, 4(3): 284(294).
[8] JAN M A, KHANUM R A. A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D[J]. Applied Soft Computing, 2013, 13(1): 128-148.
[9] YING W Q, HE W P, HUANG Y X, et al. An adaptive stochastic ranking mechanism in MOEA/D for constrained multi-objective optimization[C]//2016 International Conference on Information System and Artificial Intelligence. Hong Kong China, 2016: 514-518.
[10] ASAFUDDOULA M, RAY T, SARKER R. An adaptive constraint handling approach embedded MOEA/D[C]// 2012 IEEE Congress on Evolutionary Computation. Brisbane Australia, 2012: 1-8.
[11] FAN Z, LI W J, CAI X Y, et al. An improved epsilon constraint-handling method embedded in MOEA/D for constrained multi-objective optimization Problems[C]//2016 IEEE Symposium Series on Computational Intelligence. Athens Greece, 2016: 1-8.
[12] FAN Z, LI W J, CAI X Y, et al. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 665-679.
[13] XIANG Y, YANG X W, HUANG H, et al. Balancing constraints and objectives by considering problem types in constrained multi-objective optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 88-101.
[14] QIAO K J, CHEN Z L, QU B Y, et al. A dual-population evolutionary algorithm based on dynamic constraint processing and resources allocation for constrained multi-objective optimization problems[J]. Expert Systems with Applications, 2023, 238: 121707.
[15] YANG Y K, LIU J C, TAN S B. A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism[J]. Applied Soft Computing, 2020, 89(0): 106104.
[16] WANG X L, JIN Y C, SCHMITT S, et al. Recent advances in bayesian optimization[J]. ACM Computing Surveys, 2023, 55(13): 1-36.
[17] VEDAT D, STEVEN P. Multi-objective bilevel optimization by bayesian optimization[J]. Algorithms, 2024, 17(4): 146.
[18] WANG Y, CAI Z X, ZHOU Y R, et al. Evolutionary algorithms for constrained optimization[J]. Journal of Software, 2009, 20(1): 11-29.
[19] 弓佳明, 章腾浩, 许丽娟. 基于分解的多目标优化算法研究与分析[J]. 现代计算机, 2022, 28: 11-17.
GONG J M, ZHANG T H, XU L J. Research and analysis of multi-objective optimization algorithm based on decomposition [J]. Modern Computer, 2022, 28: 11-17.
[20] TAKAHAMA T, SAKAI T. Constrained optimization by the ε-constrained differential evolution with an archive and gradient-based mutation[C]//IEEE Congress on Evolutionary Computation. Barcelona Spain, 2010: 1-9.
[21] 韩忻辰, 俞胜平, 袁志明等. 基于Q-learning的高速铁路列车动态调度方法[J]. 控制理论与应用, 2021, 38: 1511-1521
HAN X C, YU S P, YUAN Z M, et al. Dynamic scheduling method for high-speed railway trains based on Q-learning [J]. Control Theory & Applications, 2021, 38: 1511-1521.
[22] BAI H, CHENG R, JIN Y C. Evolutionary reinforcement learning: a survey[J]. Intelligent Computing, 2023, 2: 0025.
[23] SONG S Q, ZHANG K, ZHANG L, et al. A dual-population algorithm based on self-adaptive epsilon method for constrained multi-objective optimization[J]. Information Sciences, 2024, 655: 119906.
[24] FAN Z, LI W, CAI X, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions[J]. Soft Computing, 2019, 23: 12491–12510.
[25] JAN M A, ZHANG Q. MOEA/D for constrained multi-objective optimization: some preliminary experimental results[C]//2010 UK Workshop on Computational Intelligence. Colchester UK, 2010: 1-6.
[26] ADHAM A M, MOHD-GHAZALI N, AHMAD R. Performance optimization of a microchannel heat sink using the improved strength pareto evolutionary Algorithm (SPEA2) [J]. Journal of Engineering Thermophysics, 2015, 24(1): 86-100.
[27] TIAN Y, ZHANG T, XIAO J H, et al. A coevolutionary framework for constrained multi-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 102-116.
[28] MING F, GONG W Y, ZHEN H X, et al. A simple two-stage evolutionary algorithm for constrained multi-objective optimization[J]. Knowledge-Based Systems, 2021, 228: 107263.
[29] TIAN Y, ZHANG Y, SU Y, et al. Balancing objective optimization and constraint satisfaction in constrained evolutionary multi-objective optimization[J]. IEEE Transactions on Cybernetics, 2022, 53(9): 9559-9572.
[30] QIAO K J, YU K J, QU B Y, et al. Dynamic auxiliary task-based evolutionary multitasking for constrained multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 642-656.
[31] MENDES C S, ARAUJO A F, FARIAS L R. Non-dominated sorting bidirectional differential Coevolution[C]//2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2023.
[32] MING F, GONG W Y, JIN Y C. Even search in a promising region for constrained multi-objective optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(2): 474-508.
[33] 王学武, 魏建斌, 周昕等. 一种基于超体积指标的多目标进化算法[J]. 华东理工大学学报(自然科学版), 2020, 46(6): 780-791.
WANG X W, WEI J B, ZHOU X, et al. A multi-objective evolutionary algorithm based on hypervolume indicator [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2020, 46(6): 780-791.
[34] 付世炜, 苏毅娟, 谢承旺. MOEA/IGD-NSE:一种基于IGD-NSE指标的高维多目标进化算法[J]. 广西科学, 2024, (200).
FU S W, SUY J, XIE C W. MOEA/IGD-NSE: A high-dimensional multi-objective evolutionary algorithm based on IGD-NSE metrics [J]. Guangxi Science, 2024, (200).
[35] STADLER W, DAUER J. Multicriteria optimization in engineering: a tutorial and survey[C]//Structural Optimization: Status and Future. American Institute of Aeronautics and Astronautics, 1992: 209-249.
|