[1]卢印举, 马芳, 戴曙光, 等. 融合多尺度特征的马尔可夫随机场路面裂缝分割算法[J]. 计算机辅助设计与图形学学报, 2022, 34(05): 711-721.
Lu Yinju, Ma Fang, Dai Shuguang, et al. Markov random field road crack image segmentation algorithm integrating multi-scale features[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(05): 711-721.
[2]Akagic A, Buza E, Omanovic S, et al. Pavement crack detection using Otsu thresholding for image segmentation[C]//2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO). IEEE, 2018: 1092-1097.
[3]徐欢, 李振璧, 姜媛媛, 等. 基于OpenCV和改进Canny算子的路面裂缝检测[J]. 计算机工程与设计, 2014, 35(12): 4254-4258.
Xu Huan, Li Zhenbi, Jiang Yuanyuan, et al. Pavement crack detection based on OpenCV and improved canny operator[J]. Computer Engineering and design, 2014, 35(12): 4254-4258.
[4]Ji A, Xue X, Wang Y, et al. An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement[J]. Automation in Construction, 2020, 114: 103176.
[5]Chen T, Cai Z, Zhao X, et al. Pavement crack detection and recognition using the architecture of segNet[J]. Journal of Industrial Information Integration, 2020, 18: 100144.
[6]Huyan J, Li W, Tighe S, et al. CrackU-net: A novel deep convolutional neural network for pixelwise pavement crack detection[J]. Structural Control and Health Monitoring, 2020, 27(8): e2551.
[7]Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer international publishing, 2015: 234-241.
[8]张明星, 徐健, 刘秀平, 等. 改进U-Net的路面裂缝检测方法[J]. 计算机工程与应用, 2024, 60(24): 306-313.
Zhang Mingxing, Xu jian, Liu Xiuping, et al. Improved U-Net pavement crack detection method[J]. Computer Engineering and Applications, 2024, 60(24): 306-313.
[9]何宇超, 段中兴, 高静. 基于多尺度空洞卷积结构的路面裂缝分割方法[J]. 公路交通科技, 2024, 41(01): 1-9+17.
He Yuchao, Duan Zhongxing, Gao Jing. A method for pavement crack segmentation based on multi-scale cavity convolution structure[J]. Journal of Highway and Transportation Research and Development, 2024, 41(01): 1-9+17.
[10]梁晓, 邵天义, 王雪玮, 等.考虑完整性分割的超轻量化路面裂缝检测方法[J]. 中国公路学报, 2024, 37(12): 392-407.
Liang Xiao, Shao Tianyi, Wang Xuewei, et al. Ultra-lightweight pavement crack detection method considering complete segmentation[J]. China Journal of Highway and Transport, 2024, 37(12): 392-407.
[11]Zhang Y, Liu C. Network for robust and high-accuracy pavement crack segmentation[J]. Automation in Construction, 2024, 162: 105375.
[12]Zhang J, Sun S, Song W, et al. A novel convolutional neural network for enhancing the continuity of pavement crack detection[J]. Scientific Reports, 2024, 14(1): 1-20.
[13]Zhu G, Liu J, Fan Z, et al. A lightweight encoder-decoder network for automatic pavement crack detection[J]. Computer-Aided Civil and Infrastructure Engineering, 2024, 39(12): 1743-1765.
[14]王安政, 党建武, 岳彪, 等. 基于位置信息和注意力机制的路面裂缝检测[J]. 计算机工程, 2024, 50(04): 303-312.
Wang Anzheng, Dang Jianwu, Yue Biao, et al. Road crack detection based on position information and attention mechanism[J]. Computer Engineering, 2024, 50(04): 303-312.
[15]Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021.
[16]Wang J, Zeng Z, Sharma P K, et al. Dual-path network combining CNN and transformer for pavement crack segmentation[J]. Automation in Construction, 2024, 158: 105217.
[17]张涛, 王金, 刘斌, 等. 基于改进U-net的沥青路面图像裂缝分割方法[J]. 交通信息与安全, 2023, 41(06): 90-99.
Zhang Tao, Wang jin, Liu Bin, et al. Crack segmentation of asphalt pavement images based on improved U-net[J]. Journal of Transport Information and Safety, 2023, 41(06): 90-99.
[18]Ali L, AlJassmi H, Swavaf M, et al. Rs-net: Residual Sharp U-Net architecture for pavement crack segmentation and severity assessment[J]. Journal of Big Data, 2024, 11(1): 116.
[19]Al-Huda Z, Peng B, Algburi R N A, et al. Asymmetric dual-decoder-U-Net for pavement crack semantic segmentation[J]. Automation in Construction, 2023, 156: 105138.
[20]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[21]Wang H, Cao P, Wang J, et al. Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer[C]//Proceedings of the AAAI conference on artificial intelligence. 2022, 36(3): 2441-2449.
[22]Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456.
[23]Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[24]Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv preprint arXiv:1607.06450, 2016.
[25]Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 fourth international conference on 3D vision (3DV). Ieee, 2016: 565-571.
[26]桂彦, 叶文倩, 王建新, 等. 基于CNN和尺度自适应Transformer融合网络的路面裂缝分割方法[J]. 中国公路学报, 2024, 37(12): 418-432.
Gui Yan, Ye Wenqian, Wang Jianxin, et al. CNN and sca1e adaptive transformer fusion network for pavement crack segmentation[J]. China Journal of Highway and Transport, 2024, 37(12): 418-432.
[27]Liu Y, Yao J, Lu X, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153.
[28]Yang F, Zhang L, Yu S, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1525-1535.
[29]Zou Q, Zhang Z, Li Q, et al. Deepcrack: Learning hierarchical convolutional features for crack detection[J]. IEEE transactions on image processing, 2018, 28(3): 1498-1512.
[30]Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.
[31]Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2022: 205-218.
[32]Chen B, Liu Y, Zhang Z, et al. Transattunet: Multi-level attention-guided u-net with transformer for medical image segmentation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 8(1): 55-68.
[33]Zhang X, Liang L, Zhao S, et al. GRFB-UNet: A new multi-scale attention network with group receptive field block for tactile paving segmentation[J]. Expert Systems with Applications, 2024, 238: 122109.
[34]Lau K W, Po L M, Rehman Y A U. Large separable kernel attention: Rethinking the large kernel attention design in cnn[J]. Expert Systems with Applications, 2024, 236: 121352.
[35]Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11534-11542.
[36]Ouyang D, He S, Zhang G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5. |