[1] 冯光权,董涵,冯浩文.基于FOPID+ADRC的永磁同步电机低速控制[J],计算机测量与控制.,2023,31(5):146-152. [Guang. Feng, Han Dong, Hao. Feng, Low speed control of permanent magnet synchronous motor based on FOPID+ADRC[J], Computer Measurement & Control.,2023,31(5):146-152]
[2] Staszak J, Ludwinek K, Kurkiewicz J, Bekier T, and Jaśkiewicz M.Utilization of permanent magnet synchronous motors in industrial robots[C]//2015 International Conference on Information and Digital Technologies, 2015:342-347
[3] Mohan S, T.K J S, Gopinath A, B J, and Namboothiripad M N.Modeling and simulation of high power open end winding based electromechanical actuator for aerospace applications[C]// 2015 International Conference on Power and Advanced Control Engineering (ICPACE), 2015:36-41
[4] Gabriel R, Leonhard W, and Nordby C J. Field-Oriented Control of a Standard AC Motor Using Microprocessors[J]. IEEE Transactions on Industry Applications, 1980,16(2) :186-192
[5] 储禹丞,张兰红,程梦坤.基于改进自适应趋近率的永磁同步电机无模型控制系统设计[J],计算机测量与控制,2024,32(5):137-143. [Yu. Chu, Lan. Zhang, Meng. Cheng, Design of Model free Control System for PMSM Based on Improved Adaptive Approach Rate[J], Computer Measurement & Control.,2024,32(5):137-143]
[6] 张亚葛,刘杜娟,相里康.电动汽车永磁同步电机无位置传感器分数阶滑模控制技术仿真研究,计算机测量与控制[J].,2022,30(5):121-126. [Ya. Zhang, Du. Liu, Li. Xiang, Simulation on sensorless fractional order sliding mode control technology for permanent magnet synchronous motor in electric vehicles, Computer Measurement&Control [J].,2022,30(5):121-126]
[7] J. Chen, C. Yi, R. Wang, K. Zhu and J. Cai, Learning Aided Joint Sensor Activation and Mobile Charging Vehicle Scheduling for Energy-Efficient WRSN-Based Industrial IoT[J], in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 5064-5078, April 2023.
[8] 曹薇,谢天驰.高阶非线性系统的位置控制器PID参数优化[J].电机与控制应用,2017,44(9):84. [Wei Cao, Tian. Xie, PID parameter optimization of position controller for high-order nonlinear systems, Motor and Control Applications, 2017,44(9):84.]
[9] Zhou P, Wang Y, and Deng Z.A torque impulse balance control method to achieve optimal dynamic response for permanent magnet flux-switching motor[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific),2014:1-5
[10] Q. Li, Y. Lv, R. Kennel and J. Rodriguez, Semiclosed Loop Based on Predictive Current Control for SPMSM Drives During Servo Stamping[J]. in IEEE Transactions on Power Electronics, vol. 39, no. 9, pp. 11430-11440, Sept. 2024, doi: 10.1109/TPEL.2024.3405413.
[11] Zheng, Hao, et al. A DRL-Based Edge Intelligent Servo Control with Semi-closed-Loop Feedbacks in Industrial IoT[C]. International Conference on Wireless Artificial Intelligent Computing Systems and Applications. Cham: Springer Nature Switzerland, 2024.
[12] Deng C, Xie, S Q, Wu J, et al. Position error compensation of semi-closed loop servo system using support vector regression and fuzzy PID control[J]. Int J Adv Manuf Technol , 2014,71:887-898
[13] Lewis F L and Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control[J].IEEE Circuits and Systems Magazine, 2009,9(3):32-50
[14] Arulkumaran K, Deisenroth M P, Brundage M, and Bharath A A.Deep Reinforcement Learning: A Brief Survey[J]. IEEE Signal Processing Magazine, 2017,34(6): 26-38
[15] JIA Zhen-yu,LIU Zi-long. Quadrotor Attitude Control Algorithm Based on Reinforcement Learning. Journal of Chinese Computer Systems. 2021, 42(10): 2074-2078
[16] Nicola M and Nicola C I. Improved Performance of PMSM Control Based on Nonlinear Control Law and Computational Intelligence[C]//2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), 2022: 1-8
[17] Nicola M and Nicola C I.Tuning of PI Speed Controller for PMSM Control System Using Computational Intelligence[C]//2021 21st International Symposium on Power Electronics (Ee), 2021:1-6
[18] Nicola M and Nicola C I.Improvement of PMSM Control Using Reinforcement Learning Deep Deterministic Policy Gradient Agent[C]//2021 21st International Symposium on Power Electronics (Ee), 2021,:1-6
[19] Li X et al.Data-Driven Deep Reinforcement Learning Control: Application to New Energy Aircraft PMSM[C]//2021 China Automation Congress (CAC), 2021:7172-7132
[20] Mehta H, Joshi V, Thakar U, Kuber M, and Kurulkar P.Speed control of PMSM with Hall sensors using DSP TMS320F2812[C]//2015 IEEE 11th International Conference on Power Electronics and Drive Systems, 2015:295-300
[21] Seo J H, Choi C H, and Hyun D S.A new simplified space-vector PWM method for three-level inverters[J].IEEE Transactions on Power Electronics, 2001,16(4):545-550
[22] Mnih V et al.Playing Atari with Deep Reinforcement Learning[J].arXiv preprint arXiv:1312.5602,2013
[23] Lillicrap T. P. et al. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,2019
[24] Dankwa S and Zheng W.win-Delayed DDPG: A Deep Reinforcement Learning Technique to Model a Continuous Movement of an Intelligent Robot Agent[C]// Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, 2020:1-5
[25] J. Chen, C. Yi, S. D. Okegbile, J. Cai and X. Shen, Networking Architecture and Key Supporting Technologies for Human Digital Twin in Personalized Healthcare: A Comprehensive Survey[J], in IEEE Communications Surveys & Tutorials, vol. 26, no. 1, pp. 706-746, Firstquarter 2024.
[26] 刘扬,杨玮林,毕恺韬,颜文旭.基于干扰观测器的永磁同步直线电机自适应PID控制[J].电机与控制应用,2020,47(4):18. [Yang Liu, Wei. Yang, et al, Adaptive PID Control of Permanent Magnet Synchronous Linear Motor Based on Interference Observer[J], Motor and Control Applications, 2020,47(4):18.] |