[1] LIN X J, XIONG G, GOU G P, et al. Respond to change with constancy: instruction-tuning with LLM for Non-I.I.D. Network traffic classification[J]. IEEE Transactions on Information Forensics and Security, 2025, 20: 5758-5773.
[2] SEWAK M, SAHAY S K, RATHORE H. Deep reinforcement learning in the advanced cybersecurity threat detection and protection[J]. Information Systems Frontiers, 2023, 25(2): 589-611.
[3] CARVALHO M, SOARES D, MACEDO D F. Qoe estimation across different cloud gaming services using transfer learning[J]. IEEE Transactions on Network and Service Management, 2024, 21(6): 5935-5946.
[4] KUMAR, R., KUMAR, R., & NIGAM, M. J. Alleviation of delay in tele-surgical operations using Markov approach-based smith predictor[J]. International Journal of Business Analytics (IJBAN), 2022, 9(3): 1-14.
[5] ZHAO P, DING Z, WANG M, et al. Behavior analysis for electronic commerce trading systems: a survey[J]. IEEE Access, 2019, 7: 108703-10872.
[6] HUAN S, ZHANG X, SHANG W, et al. T-shaped CAN feature integration with lightweight deep learning model for in-vehicle network intrusion detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 21193-21196.
[7] 梁晓萌, 严明, 吴杰. 基于人工蜂群算法的Tor流量在线识别方法[J]. 计算机工程, 2021, 47(11): 129-135,143.
LIANG X M, YAN M, WU J. Tor traffic online identification method based on artificial bee colony algorithm[J]. Computer Engineering. 2021, 47(11): 129-135, 143.
[8] 席荣康, 蔡满春, 芦天亮. 基于数据增强与流数据处理的Tor流量分析模型[J]. 计算机工程, 2023, 49(3): 177-184.
XI R K, CAI M C, LU T L. Tor traffic analysis model based on data enhancement and stream data processing[J]. Computer Engineering. 2023, 49(3):177-184.
[9] PARK J T, SHIN C Y, BAEK U J, et al. User behavior detection using multi-modal signatures of encrypted network traffic[J]. IEEE Access, 2023, 11: 97353-97372.
[10] VARGAS ANAMURO C, BLANC A, LAGRANGE X. Statistical analysis and characterization of signaling and user traffic of a commercial multi-band LTE system[J]. Telecommunication Systems, 2024, 87(2): 437-45.
[11] DAINOTTI A, PESCAPE A, CLAFFY K C. Issues and future directions in traffic classification[J]. IEEE network, 2012, 26(1): 35-40.
[12] SUN G L, XUE Y B, DONG Y F, et al. An novel hybrid method for effectively classifying encrypted traffic[C]//2010 IEEE Global Telecommunications Conference GLOBECOM 2010. Miami, FL, USA: IEEE, 2010: 1-5.
[13] VELAN P, ČERMÁK M, ČELEDA P, et al. A survey of methods for encrypted traffic classification and analysis[J]. International Journal of Network Management, 2015, 25(5): 355-374.
[14] ARNDT D J, ZINCIR-HEYWOOD A N. A comparison of three machine learning techniques for encrypted network traffic analysis[C]//2011 IEEE symposium on computational intelligence for security and defense applications (CISDA). Paris, France: IEEE, 2011: 107-114.
[15] YAO Z J, GE J G, WU Y L, et al. Encrypted traffic classification based on Gaussian mixture models and hidden Markov models[J]. Journal of Network and Computer Applications, 2020, 166: 10271.
[16] WU S, WANG H, WANG Y, et al. Technology analysis of network anomalous behavior detection based on machine learning[C]//2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Xi’an, China: IEEE, 2022: 730-737.
[17] SHENG C, ZHOU W, HAN Q L, et al. Network traffic fingerprinting for IoT device identification: a survey[J]. IEEE Transactions on Industrial Informatics, 2025.
[18] YAN X, HE L, XU Y, et al. High-speed encrypted traffic classification by using payload features[J]. Digital Communications and Networks, 2025, 11(2): 412-423.
[19] VU L, VAN TRA D, NGUYEN Q U. Learning from imbalanced data for encrypted traffic identification problem[C]//Proceedings of the 7th Symposium on Information and Communication Technology. New York, NY, USA: Association for Computing Machinery, 2016: 147-152.
[20] SARANYA N, HALDORAI A. Efficient intrusion detection system data preprocessing using deep sparse autoencoder with differential evolution[J]. IET Information Security, 2024, 2024(1): 9937803.
[21] WANG P, LI S H, YE F, et al. Packet-CGAN: exploratory study of class imbalance for encrypted traffic classification using CGAN\[C\]//ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-7.
[22] ZHANG Z, ZHOU Y C, TIAN H P. Network intrusion detection based on spatial features and generative adversarial networks[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(6): 40-47.
[23] 孙文茜. 基于流量特征的网络流量分类算法研究[D]. 南京: 南京信息工程大学, 2024.
SUN W Q. Research on network traffic classification algorithm based on traffic characteristics[D]. Nanjing: Nanjing University of Information Engineering, 2024.
[24] BRO WNLEE J. How to use power transforms for machine learning[J]. Machine Learning Mastery [Internet], 2020.
[25] WEISBERG S. Yeo-Johnson power transformations[J]. Department of Applied Statistics, University of Minnesota. Retrieved June, 2001, 1: 2003.
[26] MEI H T, CHENG G, ZHU Y L. Survey on tor passive traffic analysis[J]. Journal of Software, 1-36.
[27] LIU Y, ZHANG W, ZHOU Y. Classification of TLS encrypted traffic based on continuous forward and backward data transmission features[J]. Communications Technology, 2024, 57(09): 955-964.
[28] DO N Q, SELAMAT A, LIM K C, et al. An improved ensemble deep learning model based on CNN for malicious website detection[C]//International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Cham: Springer International Publishing, 2022: 497-504.
[29] ZHANG G H, WANG Z Y, CAI M W. Abnormal traffic detection in the internet of things based on imbalanced data[J]. Journal of Information Security Research, 2024, 10(11): 1012-1019.
[30] 赵广龙. 基于深度学习的轻量化网络流量分类方法研究[D]. 哈尔滨: 黑龙江大学, 2023.
ZHAO G L. Research on lightweight network traffic classification method based on deep learning[D]. Harbin: Heilongjiang University, 2023.
[31] LIN X J, XIONG G, GOU G P, et al. ET-BERT: a contextualized datagram representation with pre-training transformers for encrypted traffic classification[C]//Proceedings of the ACM Web Conference 2022 (WWW '22). Association for Computing Machinery, New York, NY, USA, 633–642.
[32] WANG Z X, LI Z Y, FU M Y, et al. Network traffic classification based on federated semi-supervised learning[J]. Journal of Systems Architecture, 2024, 149: 103091.
[33] REVATHI S, MALATHI A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection[J]. International Journal of Engineering Research & Technology (IJERT), 2013, 2(12): 1848-1853.
[34] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//2009 IEEE symposium on computational intelligence for security and defense applications. Ottawa, ON, Canada: IEEE, 2009: 1-6.
[35] CREECH G, HU J. Generation of a new IDS test dataset: time to retire the KDD collection[C]//2013 IEEE wireless communications and networking conference (WCNC). Shanghai, China: IEEE, 2013: 4487-4492.
[36] HADDADI F, ZINCIR-HEYWOOD A N. Data confirmation for botnet traffic analysis[C]//Foundations and Practice of Security: 7th International Symposium, FPS 2014, Montreal, QC, Canada, November 3-5, 2014. Revised Selected Papers 7. Springer International Publishing, 2015: 329-336.
[37] WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]//2017 International conference on information networking (ICOIN). Da Nang, Vietnam: IEEE, 2017: 712-717.
[38] BERKAY CELIK Z, WALLS R J, MCDANIEL P, et al. Malware traffic detection using tamper resistant features[J]. IEEE, 2015: 330-335.
[39] LASHKARI A H, GIL G D, MAMUN M S I, et al. Characterization of Tor traffic using time based features[C]//International Conference on Information Systems Security and Privacy. 2017, 2: 253-262.
[40] https://gitcode.com/open-source-toolkit/8c98d.
[41] https://www.traffic.comics.unina.it/mirage/mirage-2019.html.
[42] https://research.unsw.edu.au/projects/toniot-datasets.
[43] https://www.unb.ca/cic/datasets/ids-2018.html.
[44] CARLOS PINTO NETO E, TASLIMASA H, DADKHAH S, et al. CICIoV2024: advancing realistic IDS approaches against DoS and spoofing attack in IoV CAN bus[J]. Internet of Things, 2024, 26.
[45] www.ing.unibs.it/ntw/tools/traces/index.php.
[46] AULD T, MOORE A W, GULL S F. Bayesian neural networks for internet traffic classification[J]. IEEE Transactions on neural networks, 2007, 18(1): 223-239.
[47] TANG B, HE H B, BAGGENSTOSS P M, et al. A Bayesian classification approach using class-specific features for text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(6): 1602-1606.
[48] GUARINO I, NASCITA A, ACETO G, et al. Mobile network traffic prediction using high order Markov chains trained at multiple granularity[C]//2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI). Naples, Italy: IEEE, 2021: 394-399.
[49] NGUYEN THUY T.T., ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE communications surveys & tutorials, 2008, 10(4): 56-76.
[50] SHI Y, BISWAS S. Protocol-independent identification of encrypted video traffic sources using traffic analysis[C]//2016 IEEE International Conference on Communications (ICC). Kuala Lumpur, Malaysia: IEEE, 2016: 1-6.
[51] DUBIN R, DVIR A, PELE O, et al. I know what you saw last minute—encrypted http adaptive video streaming title classification[J]. IEEE transactions on information forensics and security, 2017, 12(12): 3039-3049.
[52] DONG S. Multi class SVM algorithm with active learning for network traffic classification[J]. Expert Systems with Applications, 2021, 176: 114885.
[53] RAMRAJ S, USHA G. Unsupervised feature learning methodology for tree based classifier and SVM to classify encrypted traffic[J]. International Journal of Advanced Computer Science and Applications, 2023, 14(2).
[54] 许家钰. 基于k-means算法的WiFi用户行为分析系统设计与实现[D]. 北京: 北京邮电大学, 2019.
XU J Y. Design and implementation of WiFi user behavior analysis system based on K-means algorithm[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
[55] NOORBEHBAHANI F, MANSOORI S. A new semi-supervised method for network traffic classification based on X-means clustering and label propagation[C]//2018 8th International Conference on Computer and Knowledge Engineering (ICCKE). Mashhad, Iran: IEEE, 2018: 120-125.
[56] PELLEG D, MOORE A. X-means: extending K-means with efficient estimation of the number of clusters[C]//ICML’00. Citeseer, 2000: 727-734.
[57] DU Y, HE M, WANG X. A clustering-based approach for classifying data streams using graph matching[J]. Journal of Big Data, 2025, 12(1): 37.
[58] LIU J, ZHANG P, SUN Y, et al. Network traffic classification method of power system based on DNN and K-means[C]//International Symposium on Artificial Intelligence and Robotics. Singapore: Springer Nature Singapore, 2022: 303-317.
[59] 王旭仁, 马慧珍, 冯安然, 等. 基于信息增益与主成分分析的网络入侵检测方法[J]. 计算机工程, 2019, 45(6): 175-180.
WANG X, MA H, FENG A, et al. Network intrusion detection method based on information gain and principal components analysis[J]. Computer Engineering, 2019, 45(6): 175-180.
[60] CHEN L, WANG Q J, SONG Y Q, et al. Security is readily to interpret: quantitative feature analysis for botnet encrypted malicious traffic[C]//2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC). Torino, Italy: IEEE, 2023: 753-758.
[61] JISI C, ROH B, ALI J. An effective scheme for classifying imbalanced traffic in SD-IoT, leveraging XGBoost and active learning[J]. Computer Networks, 2025, 257: 110939.
[62] 周林勇, 谢晓尧, 刘志杰, 等. 卷积神经网络池化方法研究[J]. 计算机工程, 2019, 45(4): 211-216.
ZHOU L Y, XIE X Y, LIU Z J, et al. Research on pooling method of convolution neural network[J]. Computer Engineering, 2019, 45(4): 211-216.
[63] LOTFOLLAHI M, JAFARI SIAVOSHANI M, SHIRALI HOSSEIN ZADE R, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012.
[64] YANG L X, FINAMORE A, JUN F, et al. Deep learning and Zero-Day traffic classification: lessons learned from a commercial-grade dataset[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4103-4118.
[65] WANG M N, ZHENG K F, NING X Y, et al. CENTIME: a direct comprehensive traffic features extraction for encrypted traffic classification[C]//2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). Chengdu, China: IEEE, 2021.
[66] WEI M J, LI F, LIU Y Z, et al. An intrusion detection method for Internet of vehicles based on improved WGAN-GP and ResNet[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(4): 30-37.
[67] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[68] ZHAI J, LIN P, CUI Y, et al. GraphCWGAN-GP: a novel data augmenting approach for imbalanced encrypted traffic classification[J]. CMES-Computer Modeling in Engineering & Sciences, 2023, 136(2).
[69] LIN M, CHEN Q, YAN S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.
[70] SHAMELI R, RAJKUMAR S. High-speed threat detection in 5G SDN with particle swarm optimizer integrated GRU-driven generative adversarial network[J]. Scientific Reports, 2025, 15(1): 10025.
[71] ZENDEHDEL M, DEHAKITOROGHI A, HAMIDZADEH J. MDNET: a novel neural network based on CNN and Fuzzy Rough Set with adaptive parameters for intrusion detection in the internet of things[J]. International Journal of Engineering, Transactions B: Applications, 2025, 38(12): 2965-2993.
[72] LIANG X, XING H, HOU T. Network intrusion detection method based on CGAN and CNN-BiLSTM[C]//2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI). Harbin, China: IEEE, 2023: 396-400.
[73] MO L, QI X, LIU L. Network traffic grant classification based on 1DCNN-TCN-GRU hybrid model[J]. Applied Intelligence, 2024, 54(6): 4834-4847.
[74] CHEN S Y, MA H L, ZHANG J H. Encrypted traffic classification of CNN and Bi-GRU based on self-attention[J]. Computer Science, 2024, 51(8): 396-402.
[75] BHATTI U A, TANG H, WU G, et al. Deep learning with graph convolutional networks: an overview and latest applications in computational intelligence[J]. International Journal of Intelligent Systems, 2023, 2023(1): 8342104.
[76] FENG J, SHEN L, CHEN Z, et al. HGDetector: a hybrid android malware detection method using network traffic and function call graph[J]. Alexandria Engineering Journal, 2025, 114: 30-45.
[77] XU S, HAN J, LIU Y, et al. Few-shot traffic classification based on autoencoder and deep graph convolutional networks[J]. Scientific Reports, 2025, 15(1): 8995.
[78] LIU M, YANG Q, WANG W, et al. TB-Graph: enhancing encrypted malicious traffic classification through relational graph attention networks[J]. Computers, Materials & Continua, 2025, 82(2).
[79] ZHAO G, LI L, HE H, et al. LGSMOTE-IDS: Line Graph based Weighted-Distance SMOTE for imbalanced network traffic detection[J]. Expert Systems with Applications, 2025: 127645.
[80] ZHANG H Z, YU L, XIAO X, et al. TFE-GNN: a temporal fusion encoder using graph neural networks for fine-grained encrypted traffic classification[C]//Proceedings of the ACM Web Conference 2023. New York, NY, USA: Association for Computing Machinery, 2023: 2066-2075.
[81] HE H Y, YANG Z G, CHEN X N. PERT: payload encoding representation from transformer for encrypted traffic classification[C]//2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K). Ha Noi, Vietnam: IEEE, 2020: 1-8.
[82] YU J, CHOI Y, KOO K, et al. A novel approach for application classification with encrypted traffic using BERT and packet headers[J]. Computer Networks, 2024, 254: 110747.
[83] SHI Z L, LUKTARHAN N, SONG Y Y, et al. BFCN: a novel classification method of encrypted traffic based on BERT and CNN[J]. Electronics, 2023, 12(3): 516.
[84] MA X T, LIU T, HU N, et al. Bi-ETC: a bidirectional encrypted traffic classification model based on BERT and BiLSTM[C]//2023 8th International Conference on Data Science in Cyberspace (DSC). Hefei, China: IEEE, 2023: 197-204.
[85] FARRUKH Y A, WALI S, KHAN I, et al. XG-NID: dual-modality network intrusion detection using a heterogeneous graph neural network and large language model[J]. Expert Systems with Applications, 2025: 128089.
[86] LU H, ZHANG R, KONG T. Analyzing decentralized applications traffic: a multimodal approach based on GNN and BERT[C]//International Conference on Information Security and Cryptology. Singapore: Springer Nature Singapore, 2024: 235-254.
[87] MA J, LI X, LUO H, et al. NetKD: towards resource-efficient encrypted traffic classification using knowledge distillation for language models[C]//2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Tianjin, China: IEEE, 2024: 3011-3016.
[88] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.
[89] YANG L, GUO S, LIU D, et al. ConViTML: a convolutional vision transformer-based meta-learning framework for real-time edge network traffic classification[J]. IEEE Transactions on Network and Service Management, 2024, 21(3): 3344-3357.
[90] MAJEED U, HASSAN S S, HONG C S. Cross-silo model-based secure federated transfer learning for flow-based traffic classification[C]//2021 international conference on information networking (ICOIN). Island, Korea (South): IEEE, 2021: 588-593.
[91] PEKAR A, MAKARA L A, BICZOK G. Incremental federated learning for traffic flow classification in heterogeneous data scenarios[J]. Neural Computing and Applications, 2024, 36(32): 20401-20424.
[92] MUN H, LEE Y. Internet traffic classification with federated learning[J]. Electronics, 2020, 10(1): 27.
[93] MAO W, YU B, ZHANG C, et al. FedKT: federated learning with knowledge transfer for non-IID data[J]. Pattern Recognition, 2025, 159: 111143.
[94] JIANG W, MU J, HAN H, et al. Federated learning‐based mobile traffic prediction in satellite‐terrestrial integrated networks[J]. Software: Practice and Experience, 2025, 55(4): 613-628.
[95] TANG Z Z, ZENG X W, CHEN J, et al. A review of network traffic analysis based on machine learning[J]. Network New Media Technology, 2020, 9(05): 1-8.
[96] VICENZI J C, KOROL G, JORDAN M G, et al. Exploiting virtual layers and pruning for FPGA-based adaptive traffic classification[C]//2024 27th Euromicro Conference on Digital System Design (DSD). IEEE, 2024: 194-201.
[97] XU Y, CAO J, SONG K, et al. FastTraffic: a lightweight method for encrypted traffic fast classification[J]. Computer Networks, 2023, 235: 109965.
[98] 张琬茜. 面向异构设备的高效网络流量分类技术的研究[D]. 大连: 大连理工大学, 2020.
ZHANG W X. Research on efficient network traffic classification technology for heterogeneous devices[D]. Dalian: Dalian University of Technology, 2020.
[99] 张磊. 基于深度学习的物联网恶意流量识别技术研究[D]. 济南: 齐鲁工业大学, 2024.
ZHANG L. Research on malicious traffic identification technology in Internet of things based on deep learning[D]. Jinan: Qilu University of Technology, 2024.
[100] IZADI M, SAFAYANI M, MIRZAEI A. Knowledge distillation on spatial-temporal graph convolutional network for traffic prediction[J]. International Journal of Computers and Applications, 2025, 47(1): 45-56.
[101] 王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程, 2021, 47(8): 1-13.
WANG J, FENG S, CHENG Y. Survey of research on lightweight neural network structures for deep learning[J]. Computer Engineering, 2021, 47(8): 1-13. |