[1]Haskins G, Kruger U, Yan P. Deep learning in medical image registration: a survey[J]. Machine Vision and Applications, 2020, 31(1): 8.
[2]洪犇,钱旭升,申明磊,等.基于深度学习的CT-MR图像联合配准分割方法[J].计算机工程,2023,49(9):234-245.
HONG Ben, SHEN Xusheng, SHEN Minglei, et al. Deep learning-based joint registration segmentation method for CT-MR images [J]. Computer Engineering, 2023, 49(9):234-245.
[3]莫晓盈,杨锋,尹梦晓,等.医学图像配准的深度学习方法综述[J].小型微型计算机系统,2021,42(8): 1706-1714.
MO Xiaoying, YANG Feng, YIN Mengxiao, et al. Survey on deep learning inmedical image registration[J]. Journal of Chinese ComputerSystems, 2021, 42(8): 1706-1714.
[4]彭昆,张桂梅,王杰,等.基于可变形卷积和多尺度特征聚焦的X线图像非刚性配准[J]. 生物医学工程学杂志,2023,40(3): 492-498,507.
PENG Kun, ZHANG Guimei, WANG Jie, et al. Non-rigid registration formedical images based on deformable convolution and multiscalefeature focusing modules[J]. Journal of Biomedical Engineering,2023, 40(3): 492-498, 507.
[5]Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information[J]. Proceedings of the IEEE, 2003, 91(10): 1699-1722.
[6]Avants B B, Epstein C L, Grossman M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain[J]. Medical image analysis, 2008, 12(1): 26-41.
[7]Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images[J]. Medical image analysis, 2001, 5(2): 143-156.
[8]Balakrishnan G, Zhao A, Sabuncu M R, et al. Voxelmorph: a learning framework for deformable medical image registration[J]. IEEE transactions on medical imaging, 2019, 38(8): 1788-1800.
[9]Mok T C W, Chung A. Fast symmetric diffeomorphic image registration with convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4644-4653.
[10]Chen J, He Y, Frey E C, et al. Vit-v-net: Vision transformer for unsupervised volumetric medical image registration[J]. arXiv preprint arXiv:2104.06468, 2021.
[11]Zhu Y, Lu S. Swin-voxelmorph: A symmetric unsupervised learning model for deformable medical image registration using swin transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 78-87.
[12]Zhao S, Dong Y, Chang E I, et al. Recursive cascaded networks for unsupervised medical image registration[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 10600-10610.
[13]Shu Y, Wang H, Xiao B, et al. Medical image registration based on uncoupled learning and accumulative enhancement[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2021: 3-13.
[14Hu X, Kang M, Huang W, et al. Dual-Stream Pyramid Registration Network[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 201Meng M, Bi L, Feng D, et al. Non-iterative coarse-to-fine registration based on single-pass deep cumulative learning[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 88-97.
[16]Shu Y, Wang H, Xiao B, et al. Medical image registration based on uncoupled learning and accumulative enhancement[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2021: 3-13.
[17]Kang M, Hu X, Huang W, et al. Dual-stream pyramid registration network[J]. Medical image analysis, 2022, 78: 102379.
[18]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[19]Chen J, Frey E C, He Y, et al. Transmorph: Transformer for unsupervised medical image registration[J]. Medical image analysis, 2022, 82: 102615.
[20]Chen Z, Zheng Y, Gee J C. TransMatch: a transformer-based multilevel dual-stream feature matching network for unsupervised deformable image registration[J]. IEEE transactions on medical imaging, 2023, 43(1): 15-27.
[21]Ma T, Dai X, Zhang S, et al. Pivit: Large deformation image registration with pyramid-iterative vision transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 602-612.
[22]Ghahremani M, Khateri M, Jian B, et al. H-vit: A hierarchical vision transformer for deformable image registration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 11513-11523.
[23]Lin S, Zhang Z, Huang Z, et al. Deep frequency filtering for domain generalization[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 11797-11807.
[24]Cui Y, Knoll A. Dual-domain strip attention for image restoration[J]. Neural Networks, 2024, 171: 429-439.
[25]Quan D, Wang Z, Wang S, et al. F3Net: Adaptive Frequency Feature Filtering Network for Multi-modal Remote Sensing Image Registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:5222813.
[26]Li W, Gan K, Yang L, et al. Deformable medical image registration based on wavelet transform and linear attention[J]. Biomedical Signal Processing and Control, 2024, 95: 106413.
[27]Cheng X, Jia X, Lu W, et al. Winet: wavelet-based incremental learning for efficient medical image registration[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024: 761-771.
[28]Wang S, Veldhuis R, Brune C, et al. What do neural networks learn in image classification? a frequency shortcut perspective[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 1433-1442.
[29]Sun Y, Xu C, Yang J, et al. Frequency-spatial entanglement learning for camouflaged object detection[C]//European Conference on Computer Vision. Springer, Cham, 2025: 343-360.
[30]Kong L, Dong J, Ge J, et al. Efficient frequency domain-based transformers for high-quality image deblurring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 5886-5895.
[31]Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol[J]. Frontiers in neuroscience, 2012, 6: 171.
[32]Marcus D S, Wang T H, Parker J, et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults[J]. Journal of cognitive neuroscience, 2007, 19(9): 1498-1507.
[33]Bernard O, Lalande A, Zotti C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE transactions on medical imaging, 2018, 37(11): 2514-2525.
[34]Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[35]Zhou S, Hu B, Xiong Z, et al. Self-distilled hierarchical network for unsupervised deformable image registration[J]. IEEE Transactions on Medical Imaging, 2023, 42(8): 2162-2175.
[36]Kim B, Han I, Ye J C. Diffusemorph: Unsupervised deformable image registration using diffusion model[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2022: 347-364.
|