[1]张肇鑫, 黄世泽, 张兵杰, 等. 面向交通场景的运动模糊伪装对抗样本生成方法[J]. 计算机工程, 2025, 51(3): 45-53.
ZHANG Z X, HUANG S Z, ZHANG B J, et al. Camouflaged Adversarial Example Generation Method for the Form of Motion Blur in Traffic Scenes[J]. Computer Engineering, 2025, 51(3): 45-53. (in Chinese)
[2]SONG Z, ZHANG Z, ZHANG K, et al. Robust single image reflection removal against adversarial attacks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 24688-24698.
[3]KIM J, LEE B K, RO Y M. Demystifying causal features on adversarial examples and causal inoculation for robust network by adversarial instrumental variable regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 12302-12312.
[4]刘帅威, 李智, 王国美, 等. 基于Transformer和GAN的对抗样本生成算法[J]. 计算机工程, 2024, 50(2): 180-187.
LIU S W, LI Z, WANG G M, et al. Adversarial Example Generation Algorithm Based on Transformer and GAN[J]. Computer Engineering, 2024, 50(2): 180-187. (in Chinese)
[5]LIU A, WANG J, LIU X, et al. Bias-based universal adversarial patch attack for automatic check-out[C]//Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16. Springer International Publishing, 2020: 395-410.
[6]QIN H, GONG R, LIU X, et al. Forward and backward information retention for accurate binary neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 2250-2259.
[7]Yang X, Liu C, Xu L, et al. Towards effective adversarial textured 3d meshes on physical face recognition[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 4119-4128.
[8]DUAN R, MA X, WANG Y, et al. Adversarial camouflage: Hiding physical-world attacks with natural styles[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 1000-1008.
[9]Wang X F, Mei S H, Lian J W, et al. Fooling aerial detectors by background attack via dual-adversarial-induced error identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1–16.
[10]赵宏, 宋馥荣, 李文改. 基于SE-AdvGAN的图像对抗样本生成方法研究[J]. 计算机工程, 2025, 51(2): 300-311.
ZHAO H, SONG F R, LI W G. Research on Image Adversarial Example Generation Method Based on SE-AdvGAN[J]. Computer Engineering, 2025, 51(2): 300-311. (in Chinese)
[11]张学军, 席阿友, 加小红, 等. 基于深度学习的指纹室内定位对抗样本攻击研究[J]. 计算机工程, 2024, 50(10): 228-239.
ZHANG X J, XI A Y, JIA X H, 等. Study on Adversarial Sample Attacks on Deep Learning Based Fingerprinting Indoor Localization[J]. Computer Engineering, 2024, 50(10): 228-239. (in Chinese)
[12]Pan Y S, Wang H P. ShipCamou: adversarial camouflage against optical remote sensing image ship detector[C]//First Aerospace Frontiers Conference (AFC 2024). SPIE, 2024, 13218: 933-943.
[13]SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. International Conference on Learning Representations, 2014, 1-10.
[14]KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[M]//Artificial intelligence safety and security. Chapman and Hall/CRC, 2018: 99-112.
[15]CHENG M, LE T, CHEN P Y, et al. Query-efficient hard-label black-box attack: An optimization-based approach[C]. International Conference on Learning Representations, 2018, 13(4): 1065-1077.
[16]HUANG L, GAO C, ZHOU Y, et al. Universal physical camouflage attacks on object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 720-729.
[17]SURYANTO N, KIM Y, KANG H, et al. Dta: Physical camouflage attacks using differentiable transformation network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 15305-15314.
[18]EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning visual classification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 1625-1634.
[19]ATHALYE A, ENGSTROM L, ILYAS A, et al. Synthesizing robust adversarial examples[C]//International conference on machine learning. PMLR, 2018: 284-293.
[20]WANG J, LIU A, YIN Z, et al. Dual attention suppression attack: Generate adversarial camouflage in physical world[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 8565-8574.
[21]CHEN G, ZHAO Z, SONG F, et al. AS2T: Arbitrary source-to-target adversarial attack on speaker recognition systems[J]. IEEE Transactions on Dependable and Secure Computing, 2022 :1-19.
[22]徐宇晖, 潘志松, 徐堃. 面向三种形态图像的对抗攻击研究综述[J]. 计算机科学与探索, 2024, 18(12): 3080-3099.
XU Y H, PAN Z S, XU K. Review of Research on Adversarial Attack in Three Kinds of Images[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3080-3099. (in Chinese)
[23]戴磊, 曹林, 郭亚男, 等. 基于生成对抗网络的深度伪造跨模型防御方法[J]. 计算机工程, 2024, 50(10): 100-109.
DAI L, CAO L, GUO Y N, et al. Deepfake Cross-Model Defense Method Based on Generative Adversarial Network[J]. Computer Engineering, 2024, 50(10): 100-109. (in Chinese)
[24]WU W, SU Y, CHEN X, et al. Boosting the transferability of adversarial samples via attention[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 1161-1170.
[25]WANG D, JIANG T, SUN J, et al. Fca: Learning a 3d full-coverage vehicle camouflage for multi-view physical adversarial attack[C]//Proceedings of the AAAI conference on artificial intelligence. 2022, 36(2): 2414-2422.
[26]ZHANG Y, WANG L, ZHANG C, et al. Adversarial examples in visual object tracking in satellite videos: Cross-frame momentum accumulation for adversarial examples generation[J]. Remote Sensing, 2023, 15(13): 3240-3261.
|