[1] SATYAJIT S. State of IoT Summer 2024[R/OL]. (2024-09-03)[2025-04-05]. https://iot-analytics.com/number-connected-iot-devices.
[2] ALTOWAIJRI A H, ALFAIFI M S, ALSHAWI T A, et al. A privacy-preserving iot-based fire detector[J]. IEEE Access, 2021, 9: 51393-51402.
[3] ARKIN E, YADIKAR N, XU X, et al. A survey: object detection methods from CNN to transformer[J]. Multimedia Tools and Applications, 2023, 82(14): 21353-21383.
[4] 杨红菊, 吉昌. 学习驱动的图像压缩算法研究[J]. 计算机工程, 2025, 51(1): 190-197.
YANG H J, JI C. Research on Learning-Driven Image Compression Algorithm[J]. Computer Engineering, 2025, 51(1): 190-197.
[5] YANG X, XU Z, QI Q, et al. Pico: pipeline inference framework for versatile cnns on diverse mobile devices[J]. IEEE Transactions on Mobile Computing, 2024, 23(4): 2712-2730.
[6] 陈晨, 王宇航. 面向资源受限设备的轻量化深度学习模型研究进展[J]. 电子学报, 2022, 50(8): 1450-1462.
CHEN C, WANG Y H. Research progress on lightweight deep learning models for resource-constrained devices [J]. Acta Electronica Sinica, 2022,50(8): 1450-1462.
[7] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
[8] LU Z, DING C, JUEFEI-XU F, et al. Tformer: A transmission-friendly vit model for iot devices[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(2): 598-610.
[9] KHANI M, HAMADANIAN P, NASR-ESFAHANY A, et al. Real-time video inference on edge devices via adaptive model streaming[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 4552-4562.
[10] DING C, LU Z, JUEFEI-XU F, et al. Towards transmission-friendly
and robust cnn models over cloud and device[J]. IEEE Transactions on
Mobile Computing, 2023, 22(10): 6176-6189.
[11] JUEFEI-XU F, NARESH BODDETI V, SAVVIDES M. Local binary
convolutional neural networks[C]// Proceedings of the IEEE
conference on computer vision and pattern recognition. Washington D.
C., USA: IEEE Press, 2017: 19-28.
[12] ESHRATIFAR A E, ABRISHAMI M S, PEDRAM M. JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services[J]. IEEE transactions on mobile computing, 2021,
20(2): 565-576.
[13] LI Y, LIU Z, KOU Z, et al. Real-time Adaptive Partition and Resource
Allocation for Multi-user End-cloud Inference Collaboration in Mobile
Environment[J]. IEEE Transactions on Mobile Computing, 2024,
23(12): 13076-13094.
[14] LASKARIDIS S, VENIERIS S I, ALMEIDA M, et al. SPINN:
Synergistic progressive inference of neural networks over device and
cloud[C]// Proceedings of the 26th annual international conferenceon
mobile computing and networking. New York, USA: ACM Press, 2020:
1-15.
[15] DING C, XIE J, ZHANG J, et al. GroupNL: Low-resource and robust
CNN design over cloud and device[EB/OL]. [2025-06-14].
https://doi.org/10.48550/arXiv.2506.12335.
[16] LU Z, DING C, WANG S, et al. Seed feature maps-based cnn models
for leo satellite remote sensing services[C]// 2023 IEEE International
Conference on Web Services(ICWS). Washington D. C., USA: IEEE
Press, 2023: 415-425.
[17] YU J, DING C, LI H, et al. Localized knowledge distillation helps iot
devices provide high-performance visual services[C]// 2023 IEEE
International Conference on Web Services(ICWS). Washington D. C.,
USA: IEEE Press, 2023: 170-178.
[18] 王月昊, 周若华. 低资源环境下的语音唤醒研究综述[J]. 计算机工
程, 2025, 51(02): 35-53.
WANG Y H, ZHOU R H. Review of Research on Keyword Spotting in
Low-Resource Environments[J]. Computer Engineering, 2025, 51(02):
35-53.
[19] 王楠, 王淇, 欧阳丹彤. 基于知识蒸馏与动态调整机制的多模态情
感分析模型[J/OL]. 计算机学报: 1-21[2025-04-06].http://kns.cnki.ne
t/kcms/detail/11.1826.TP.20250402.1820.003.html.
WANG N, WANG Q, OUYANG D T. Multimodal sentiment analysis
model based on knowledge distillation and dynamic adjustment
mechanism[J/OL]. Journal of Computer Research and Development:
1-21[2025-04-06].
http://kns.cnki.net/kcms/detail/11.1826.TP.20250402.1820.003.html.
[20] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient
convolutional neural networks for mobile vision applications[EB/OL].
[2025-04-02]. https://doi.org/10.48550/arXiv.1704.04861.
[21] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted
residuals and linear bottlenecks[C]// Proceedings of the IEEE
conference on computer vision and pattern recognition. Washington D.
C., USA: IEEE Press, 2018: 4510-4520.
[22] HOWARD A, SANDLER M, CHU G, et al. Searching for
mobilenetv3[C]// Proceedings of the IEEE/CVF international
conference on computer vision. Washington D. C., USA: IEEE Press,
2019: 1314-1324.
[23] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely efficient
convolutional neural network for mobile devices[C]// Proceedings of
the IEEE conference on computer vision and pattern recognition.
Washington D. C., USA: IEEE Press, 2018: 6848-6856.
[24] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical
guidelines for efficient cnn architecture design[C]// Proceedings of the
European conference on computer vision. Berlin, Germany: Springer,
2018: 116-131.
[25] AZULAY A, WEISS Y. Why do deep convolutional networks
generalize so poorly to small imagetransformations?[J]. Journal of
Machine Learning Research, 2019, 20(184): 1-25.
[26] YUAN Y, XU B, HOU L, et al. Tea: Test-time energy adaptation[C]//
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Washington D. C., USA: IEEE Press, 2024:
23901-23911.
[27] HENDRYCKS D, DIETTERICH T. Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations[EB/OL].
[2025-06-01]. https://doi.org/10.48550/arXiv.1903.12261.
[28] LIANG B, LI H, SU M, et al. Detecting adversarial image examples in
deep neural networks with adaptive noise reduction[J]. IEEE
Transactions on Dependable and Secure Computing, 2021, 18(1):
72-85.
[29] CHOI S H, SHIN J, CHOI Y H. PIHA: Detection method using
perceptual image hashing against query-based adversarial attacks[J].
Future Generation Computer Systems, 2023, 145: 563-577.
[30] WANG Z, PANG T, DU C, et al. Better diffusion models further
improve adversarial training[C]// International conference on machine
learning. New York, USA: ACM Press, 2023: 36246-36263.
[31] HENDRYCKS D, MU N, CUBUK E D, et al. AugMix: A Simple Data
Processing Method to Improve Robustness and Uncertainty[EB/OL].
[2025-06-01]. https://doi.org/10.48550/arXiv.1912.02781.
[32] HENDRYCKS D, BASART S, MU N, et al. The many faces of
robustness: A critical analysis of out-of-distribution generalization[C]//
IEEE/CVF international conference on computer vision. Washington D.
C., USA: IEEE Press, 2021: 8320-8329.
[33] WU Y, HE K. Group normalization[C]// Proceedings of the European
conference on computer vision (ECCV). Berlin, Germany: Springer,
2018: 3-19.
[34] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift[EB/OL].
[2025-06-01]. https://doi.org/10.48550/arXiv.1502.03167.
[35] KRIZHEVSKY A, HINTON G. Learning multiple layers of featur
es from tiny images[R/OL]. [2025-05-27]. https://www.cs.toronto.e
du/~kriz/learning-features-2009-TR.pdf.
[36] JUEFEI-XU F, BODDETI V N, SAVVIDES M. Perturbative neural
networks[C]// Proceedings of the IEEE conference on computer vision
and pattern recognition. Washington D. C., USA: IEEE Press, 2018:
3310-3318.
[37] HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap
operations[C]// Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. Washington D. C., USA: IEEE Press,
2020: 1580-1589.
|