[1] 刘淼,林婉茹,王琴,等.车联网联邦学习的数据异质性问题及基于个性化的解决方法综述[J].通信学报,2024,45(10):207-224.
LIU M, LIN W R, WANG Q, et al. Survey on data heterogeneity problems and personalization based solutions of federated learning in Internet of vehicles[J]. Journal on Communications, 2024, 45(10): 207–224.
[2] RAUNIYAR A, HAGOS D H, JHA D, et al. Federated learning for medical applications: a taxonomy, current trends, challenges, and future research directions[J]. IEEE Internet of Things Journal, 2024,11(5):7374-7398.
[3] LIU D C, DANG Z, PENG C L, et al. FedForgery: generalized face forgery detection with residual federated learning[J]. IEEE Transactions on Information Forensics and Security, 2023,18:4272-4284.
[4] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282.
[5] KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: strategies for improving communication efficiency[C]//Proceedings of the 29th Conference on Neural Information Processing Systems, New York: Curran Associates, 2016: 5-10.
[6] LU X Z, XIAO L, LI P M, et al. Reinforcement learning-based physical cross-layer security and privacy in 6G[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 425-466.
[7] CHEN Y H, LIU Z B, LU X Z, et al. Risk-Aware reinforcement learning based federated learning framework for Io V[C]//2024 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2024: 1-6.
[8] ZHU L, LIU Z, HAN S. Deep leakage from gradients[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, New York: Curran Associates, 2019: 14774 - 14784.
[9] ZHAO P, CAO Z K, JIANG J, et al. Practical private aggregation in federated learning against inference attack[J]. IEEE Internet of Things Journal, 2023, 10(1): 318-329.
[10] WANG D B, GUAN S P. FedFR-ADP: Adaptive differential privacy with feedback regulation for robust model performance in federated learning[J]. Information Fusion, 2025, 116: 102796.
[11] XIE Q P, JIANG S Y, JIANG L S, et al. Efficiency optimization techniques in privacy-preserving federated learning with homomorphic encryption: A brief survey[J]. IEEE Internet of Things Journal, 2024, 11(14): 24569-24580.
[12] 刘铭辉,张恩,王梦涛,等.非平衡场景下的模糊隐私集合交集基数协议[J/OL].计算机工程,1-13[2025-04-12]. https:// doi.org/10.19678/j.issn.1000-3428.0070356.
LIU M H, ZHANG E, WANG M T, et al. Fuzzy private set intersection cardinality protocol in unbalanced scenarios [J]. Computer Engineering, 1-13[2025-04-12]. https:// doi.org/10.19678/j.issn.1000-3428.0070356.
[13] XU R H, BARACALDO N, ZHOU Y, et al. Hybridalpha: an efficient approach for privacy-preserving federated learning[C]//Proceedings of the 12th ACM workshop on artificial intelligence and security. New York: ACM Press,2019: 13-23.
[14] STEVENS T, SKALKA C, VINCENT C, et al. Efficient differentially private secure aggregation for federated learning via hardness of learning with errors[C]//31st USENIX Security Symposium (USENIX Security 22). Berkeley: USENIX Association, 2022: 1379-1395.
[15] 张少波,张激勇,朱更明,等.基于Bregman散度和差分隐私的个性化联邦学习方法[J].软件学报,2024,35(11):5249-5262.
ZHANG S B, ZHANG J Y, ZHU G M, et al. Personalized federated learning method based on Bregman divergence and differential privacy[J]. Journal of Software, 2024, 35(11): 5249–5262.
[16] MA J, NAAS S A, SIGG S, et al. Privacy‐preserving federated learning based on multi‐key homomorphic encryption[J]. International Journal of Intelligent Systems, 2022, 37(9): 5880-5901.
[17] 牛淑芬,王宁,周旭升,等.智慧医疗中基于秘密共享和同态加密的安全联邦学习方案[J/OL].计算机工程,1-13[2025-04-12].https://doi.org/10.19678/j.issn.1000-3428.0070132.
NIU S F, WANG N, ZHOU X S, et al. Secure federated learning scheme based on secret sharing and homomorphic encryption in smart healthcare [J/OL]. Computer Engineering, 1-13[2025-04-12]. https://doi. org/10.19678/j.issn.1000-3428.0070132.
[18] BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM Press,2017: 1175-1191.
[19] LIU Z Z, CHEN S, YE J, et al. SASH: Efficient secure aggregation based on SHPRG for federated learning[C]//Uncertainty in Artificial Intelligence. New York: PMLR, 2022: 1243-1252.
[20] GUO X J, LIU Z L, LI J, et al. VeriFL: communication-efficient and fast verifiable aggregation for federated learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 1736-1751.
[21] XU G W, LI H W, LIU S, et al. VerifyNet: secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 911-926.
[22] FU A M, ZHANG X L, XIONG N X, et al. VFL: A verifiable federated learning with privacy-preserving for big data in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 18(5): 3316-3326.
[23] WANG R Y, YUAN X M, YANG Z G, et al. RFLPV: a robust federated learning scheme with privacy preservation and verifiable aggregation in IoMT[J]. Information Fusion, 2024, 102: 102029.
[24] HAHN C, KIM H, KIM M, et al. VerSA: verifiable secure aggregation for cross-device federated learning[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(1): 36-52.
[25] ZHONG Y J, TAN W Z, XU Z F, et al. WVFL: weighted verifiable secure aggregation in federated learning[J]. IEEE Internet of Things Journal, 2024,11(11): 19926 - 19936.
[26] YANG X, MA M J, TANG X H. An efficient privacy-preserving and verifiable scheme for federated learning[J]. Future Generation Computer Systems, 2024,160:238-250.
[27] CAI J W, SHEN W T, QIN J. ESVFL: efficient and secure verifiable federated learning with privacy-preserving[J]. Information Fusion, 2024, 109: 102420.
[28] KREPS D M, WILSON R. Sequential equilibria[J]. Econometrica: Journal of the Econometric Society, 1982, 50(4): 863–894.
[29] 张恩,秦磊勇,杨刃林等.基于弹性秘密共享的多方门限隐私集合交集协议[J].软件学报,2023,34(11):5424-5441.
ZHANG E, QIN L Y, YANG R L, et al. Multi-party threshold private set intersection protocol based on robust secret sharing[J]. Journal of Software Science, 2023,34 (11): 5424-5441.
[30] SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613.
[31] MILLION E. The hadamard product[J]. Course Notes, 2007, 3(6): 1-7.
[32] DIFFIE W, HELLMAN M. New directions in cryptography[J]. IEEE transactions on Information Theory,1976,22(6),644-654.
[33] DONG C Y, WANG Y L, ALDWEESH A, et al. Betrayal, distrust, and rationality: smart counter-collusion contracts for verifiable cloud computing[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM Press,2017: 211-227.
|