[1] 中共中央办公厅 国务院办公厅. 关于进一步完善医疗卫生服务体系的意见[EB/OL].(2023-03-23) [2025-03-30].https://www.gov.cn/zhengce/2023-03/23/content_5748063.html
General Office of the CPC Central Committee and General Office of the State Council. Opinions on further improving the medical and health service system[EB/OL].(2023-03-23) [2025-03-30].https://www.gov.cn/zhengce/2023-03/23/content_5748063.html. (in Chinese)
[2] 上海市人民政府办公厅. 上海市发展医学人工智能工作方案(2025—2027年)[EB/OL].(2024-12-24) [2025-03-30]. https://www.shanghai.gov.cn/gwk/search/content/0f60c01551784720899dbb911e9d5f08
Shanghai Municipal People's Government Office. Shanghai's Work Plan for the Development of Medical Artificial Intelligence (2025-2027) [EB/OL].(2024-12-24)[2025-03-30]. https://www.shanghai.gov.cn/gwk/search/content/0f60c01551784720899dbb911e9d5f08. (in Chinese)
[3] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 5998-6008.
[4] Deng Z, Ma W, Han Q L, et al. Exploring DeepSeek: A Survey on Advances, Applications, Challenges and Future Directions[J]. IEEE/CAA Journal of Automatica Sinica, 2025, 12(5): 872-893.
[5] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.
[6] Luo R, Sun L, Xia Y, et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining[J]. Briefings in bioinformatics, 2022, 23(6): bbac409.
[7] Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge[J]. Nature, 2023, 620(7972): 172-180.
[8] Ruan Y, Maddison C J, Hashimoto T B. Observational scaling laws and the predictability of langauge model performance[J]. Advances in Neural Information Processing Systems, 2024, 37: 15841-15892.
[9] 罗焕坤,葛一烽,刘帅.大语言模型在数学推理中的研究进展[J].计算机工程, 2024,50(09):1-17.DOI:10.19678/j.issn.1000-3428.0069590.
LUO H K, GE Y F, LIU S. Research Progress of Large Language Models in Mathematical Reasoning[J].Computer Engineering, 2024,50(09):1-17.DOI:10.19678/j.issn.1000-3428.0069590.(in Chinese)
[10] Wu Y, Sun Z, Li S, et al. Inference scaling laws: An empirical analysis of compute-optimal inference for LLM problem-solving[C]//The Thirteenth International Conference on Learning Representations. 2025.
[11] Wei J, Wang X, Schuurmans D, et al. Chain-of-thought prompting elicits reasoning in large language models[J]. Advances in neural information processing systems, 2022, 35: 24824-24837.
[12] Kojima T, Gu S S, Reid M, et al. Large language models are zero-shot reasoners[J]. Advances in neural information processing systems, 2022, 35: 22199-22213.
[13] Ji Z, Lee N, Frieske R, et al. Survey of hallucination in natural language generation[J]. ACM Computing Surveys, 2023, 55(12): 1-38.
[14] Amatriain X. MEASURING AND MITIGATING HALLUCINATIONS IN LARGE LANGUAGE MODELS: AMULTIFACETED APPROACH[J]. 2024.
[15] Lewis P, Perez E, Piktus A, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks[J]. Advances in Neural Information Processing Systems, 2020, 33: 9459-9474.
[16] Li W, Zhu W, Wang X, et al. Text2DT: decision rule extraction technology for clinical medical text[J]. J. Med. Inform, 2022, 43(12): 16-22.
[17] Junying Chen, Zhenyang Cai, et al. 2025. Towards Medical Complex Reasoning with LLMs through Medical Verifiable Problems. In Findings of the Association for Computational Linguistics: ACL 2025, pages 14552–14573, Vienna, Austria. Association for Computational Linguistics.
[18] Xiao J, Chen Y, Ou Y, et al. Baichuan2-sum: Instruction finetune baichuan2-7b model for dialogue summarization[C]//2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024: 1-8.
[19] CHEN J, CAI Z, JI K, et al. HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs[A/OL]//arXiv preprint. arXiv, 2024. https://arxiv.org/abs/2412.18925.
[20] GRATTAFIORI A, DUBEY A, JAUHRI A, et al. The Llama 3 Herd of Models[A/OL]//arXiv preprint. arXiv, 2024. https://arxiv.org/abs/ 2407.21783.
[21] Abacha A B, Yim W, Fu Y, et al. Medec: A benchmark for medical error detection and correction in clinical notes[C]//Findings of the Association for Computational Linguistics: ACL 2025. 2025: 22539-22550.
[22] Zeng A, Xu B, Wang B, et al. ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools[J]. CoRR, 2024..
[23] Yang A, Yang B, Zhang B, et al. Qwen2.5 technical report[J]. arXiv preprint. arXiv:2412.15115, 2024.
[24] Wang X, Li J, Chen S, et al. Huatuo-26M, a Large-scale Chinese Medical QA Dataset[C]//Findings of the Association for Computational Linguistics: NAACL 2025. 2025: 3828-3848.
|