[1] Khalil H A. Towards Optimizing Hybrid Mo
vie Recommender Systems[J]. Revue d'Intelli
gence Artificielle, 2024, 38(1):159-173.
[2] Ahmadian Yazdi H, Seyyed Mahdavi S J, A
hmadian Yazdi H. Dynamic educational reco
mmender system based on Improved LSTM
neural network[J]. Scientific Reports, 2024,
14(1): 4381.
[3] Guo Taolin, Peng Shunshun, Dong Kai. RDPCF:
Range-based differentially private user data
perturbation for collaborative filtering[J].
Computers & Security, 2023, 134: 0167-4048.
[4] Yang Z H, Cai Z M. Detecting abnormal pr
ofiles in collabo rative filtering recommende
r systems[J]. Journal of Intelli gent Informat
ion Systems, 2017, 48: 499-518.
[5] Sundar A P, Li F, Zou X K, et al. Understa
nding Shilling Attacks and Their Detection
Traits: A Comprehensive Survey[J]. IEEE A
ccess, 2020, 8: 171703-171715.
[6] Zayed R A, Ibrahim L F, Hefny H A, et al.
Experimental and theoretical study for the
popular shilling attacks detection methods in
collaborative recommender system[J]. IEEE
Access, 2023, 11: 79358–79369.
伍之昂, 庄毅, 王有权, 等. 基于特征选择的
推荐系统托攻击检测算法[J]. 电子学报, 201
2, 40(8): 1687-1693. [7]
[8]
[9]
伍之昂, 庄毅, 王有权, 等. 基于特征选择的
推荐系统托攻击检测算法[J]. 电子学报, 201
2, 40(8): 1687-1693.
Wu Zhiang, Zhuang Yi, Wang Youquan, et al.
Shilling Attack Detection Based on Feature
Selection for Recommendation Systems[J], Acta
Electronica Sinica, 2012, 40(8): 1687-1693.
Cai Hongyun, Zhang Fuzhi. BS-SC: An uns
upervised approach for detecting shilling pro
files in collaborative recommender systems
[J]. IEEE Transactions on Knowledge and D
ata Engineering, 2021, 33(4), 1375–1388.
贾俊杰, 李天乐, 刘世龙. 多视角特征融合的
托攻击检测方法[J]. 计算机工程, 1-16[2025
04-25].
Jia Junjie, Li Tianle, Liu Shilong. Multi-vie
w feature fusion based on shilling attack det
ection [J]. Computer engineering, 1-16[2025
04-25].
Wu Zhiang, Zhuang Yi, Wang Youquan, et al.
Shilling Attack Detection Based on Feature
Selection for Recommendation Systems[J], Acta
Electronica Sinica, 2012, 40(8): 1687-1693.
Cai Hongyun, Zhang Fuzhi. BS-SC: An uns
upervised approach for detecting shilling pro
files in collaborative recommender systems
[J]. IEEE Transactions on Knowledge and D
ata Engineering, 2021, 33(4), 1375–1388.
贾俊杰, 李天乐, 刘世龙. 多视角特征融合的
托攻击检测方法[J]. 计算机工程, 1-16[2025
04-25].
Jia Junjie, Li Tianle, Liu Shilong. Multi-vie
w feature fusion based on shilling attack det
ection [J]. Computer engineering, 1-16[2025
04-25].
[10] Lee J S, Zhu D. Shilling attack detection—
a new approach for a trustworthy recommen
der system[J]. INFORMS Journal on Compu
ting, 2012, 24(1): 117-131.
[11] 卫星君, 顾清华. 针对协同过滤推荐系统的
混淆托攻击模型[J]. 计算机与数字工程, 201
8, 46(8): 1575-1579.
Xingjun WEI, Qinghua GU. Shilling Attack
Model of Obfuscation for Collaborative Filte
ring Recommender System[J], Computer &
Digital Engineering, 2018, 46(8): 1575-1579.
[12] Gao M, Yuan Q, Ling B, et al. Detection o
f
abnormal item based on time intervals for
recommender systems[J]. The Scientific Wo
rld Journal, 2014, 2014(1): 845897.
[13] 邵晨. 面向协同过滤推荐系统的托攻击检测
方法研究[D]. 哈尔滨: 哈尔滨理工大学,
2023.
Shao Chen. Research on shilling attack dete
ction for collaborative filtering recommender
systems [D]. Harbin: harbin university of s
cience and technology, 2023.
[14] Chirita P A, Nejdl W, Zamfir C. Preventing
shilling
attacks
in
online recommender
systems[C]//Proceedings of the 7th annual ACM
international workshop on Web information and
data management. New York, USA: Association
for Computing Machinery, 2005: 67-74.
[15] Burke R, Mobasher B, Williams C, et al. C
lassification features for attack detection in
collaborative recommender systems[C]//Proce
edings of the 12th ACM SIGKDD internatio
nal conference on Knowledge discovery and
data mining. New York, USA: KDD, 2006:
542-547.
[16] Burke R, Mobasher B, Williams C, et al. D
etecting Profile Injection Attacks in Collabor
ative Recommender Systems[C]//The 8th IEE
E International Conference on E-Commerce
Technology and The 3rd IEEE International
Conference on Enterprise Computing, E-Com
merce, and E-Services. San Francisco, CA,
USA: IEEE, 2006: 23-23.
[17] Williams C A, Mobasher B, Burke R.
Defending recommender systems: detection of
profile injection attacks[J]. Service Oriented
Computing and Applications, 2007, 1(3):
157-170.
[18] Zhou Quanqiang, Huang Cheng. A recomme
ndation attack detection approach integrating
CNN with Bagging[J]. Computers & Securi
ty, 2024, 146, 0167-4048.
[19] 于金霞, 李佳昕, 李星宇, 等. 多尺度特征融
合的托攻击检测方法[J]. 重庆邮电大学学报
(自然科学版), 2023, 35(5): 863-872.
Yu Jinxia, Li Jiaxin, LI Xingyu, et al. Shilli
ng attack detection method based on multi-s
cale feature fusion[J]. Journal of Chongqing
University of Posts and Telecommunications
(Natural Science Edition), 2023, 35(5): 863
872.
[20] Mehta B, Nejdl W. Unsupervised strategies f
or shilling detection and robust collaborative
filtering[J]. User Modeling and User-Adapte
d Interaction, 2008, 19: 65–97. [21] Kenneth Bryan, Michael O'Mahony, Pádraig
Cunningham. Unsupervised retrieval of attac
k profiles in collaborative recommender syst
ems[C]//Proceedings of the 2008 ACM conf
erence on Recommender systems. New York,
NY, USA: Association for Computing Mac
hinery, 2008: 155–162.
[22] R Bhaumik, B Mobasher, R Burke. A cluste
ring approach to unsupervised attack detectio
n in collaborative recommender systems[C]//
Proceedings of the 7th International Confere
nce on Data Mining. Vancouver: IEEE, 2011:
181–187.
[23] Yang Zhihai, Cai Zhongmin, Yang Yuan. Sp
otting anomalous ratings for rating systems
by analyzing target users and items[J]. Neur
ocomputing, 2017, 240: 25–46.
[24] Zhang Fuzhi, Zhang Zening, Zhang Peng, et al.
UD-HMM: An unsupervised method for shilling
attack detection based on hidden Markov model
and
hierarchical
Knowledge-Based
146-166.
Systems,
clustering[J].
2018,
148:
[25] Wu Zhiang, Cao Jie, Mao Bo, et al. Semi-S
AD: Applying semi-supervised learning to s
hilling attack detection[C]//Proceedings of th
e Fifth ACM Confer ence on Recommender
Systems. New York, NY, USA: Association
for Computing Machinery, 2011: 289–292.
[26] Wu Zhiang, Wu Junjie, Cao Jie, et al. HyS
AD: a semi-supervised hybrid shilling attack
detector for trustworthy product recommend
ation[C]// Proceedings of the 18th ACM SI
GKDD International Conference on Knowled
ge Discovery and Data Mining. New York,
NY, USA: ACM, 2012: 985-993.
[27] 贾俊杰, 段超强. 基于评分离散度的托攻击
检测算法[J]. 计算机工程与科学, 2022, 44(0
3): 554-562.
Jia Junjie, Duan Chaoqiang. A shilling attac
k detection algorithm based on score dispers
ion[J]. Computer Engineering and Science, 2
[28] 李文涛, 高旻, 李华, 等. 一种基于流行度分
类特征的托攻击检测算法[J]. 自动化学报, 2
015, 41(9): 1563-1576.
Li Wentao, Gao Min, Li Hua, et al. An shil
ling attack detection algorithm based on pop
ularity degree features [J]. acta automatica si
nica, 2015, 41(9): 1563-1576.
[29] Zhou Q, Wu J, Duan L. Recommendation attack
detection based on deep learning[J]. Journal of
Information Security and Applications, 2020, 52:
102493.
[30] Cong Shuang, Zhou Yang. A review of
convolutional neural network architectures and
their
optimizations[J]. Artificial Intelligence
Review, 2023, 56: 1905–1969.
[31] Marukatat S. Tutorial on PCA and approximate
PCA and approximate kernel PCA[J]. Artifcial
Intelligence Review, 2023, 56: 5445–5477.
[32] 李聪, 骆志刚. 基于数据非随机缺失机制的
推荐系统托攻击探测[J]. 自动化学报, 2013,
39(10): 1681-1690.
Li Cong, Luo Zhigang. Detecting shilling
attacks in recom mender systems based on
non-random-missing
mechanism[J].
Acta
Automatica Sinica, 2013, 39(10): 1681-1690.
[33] Dou Tong, Yu Junliang, Xiong Qingyu, et a
l. Collaborative Shilling Detection Bridging
Factorization and User Embedding[J]. Collab
orative Computing: Networking, Application
and Worksharing, 2018, 26: 459-469.
|