[1]McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Artificial intelligence and statistics. PMLR, 2017: 1273-1282.
[2]Kairouz P, McMahan H B, Avent B, et al. Advances and open problems in federated learning[J]. Foundations and trends® in machine learning, 2021, 14(1–2): 1-210.
[3]Nguyen D C, Ding M, Pathirana P N, et al. Federated learning for internet of things: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1622-1658.
[4]熊世强,何道敬,王振东,等.联邦学习及其安全与隐私保护研究综述[J].计算机工程,2024,50(05):1-15.
Xiong S Q, He D J, Wang Z D, et al. A Review of Federated Learning and Its Security and Privacy Protection[J]. Computer Engineering, 2024, 50(05): 1-15.
[5]吴小红,李佩,顾永跟,等.基于EMD最优匹配的分层联邦学习算法[J].计算机工程,2025,51(02):170-178.
Wu X H, Li P, Gu Y G, et al. Hierarchical Federated Learning Algorithm Based on Optimal Matching of Empirical Mode Decomposition (EMD)[J]. Computer Engineering, 2025, 51(02): 170-178.
[6]Li T, Sahu A K, Talwalkar A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE signal processing magazine, 2020, 37(3): 50-60.
[7]Zhang J, Hua Y, Wang H, et al. Fedala: Adaptive local aggregation for personalized federated learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(9): 11237-11244.
[8]顾永跟,高凌轩,吴小红,等.非独立同分布下联邦半监督学习的数据分享研究[J].计算机工程,2024,50(06):188-196.
Gu Y G, Gao L X, Wu X H, et al. Research on Data Sharing in Federated Semi-supervised Learning under Non-IID (Non-Independent and Identically Distributed) Conditions[J]. Computer Engineering, 2024, 50(06): 188-196.
[9]Collins L, Hassani H, Mokhtari A, et al. Exploiting shared representations for personalized federated learning[C]//International conference on machine learning. PMLR, 2021: 2089-2099.
[10]Chen H Y, Chao W L. On bridging generic and personalized federated learning for image classification[J]. arXiv preprint arXiv:2107.00778, 2021.
[11]Zhang J, Hua Y, Wang H, et al. Fedcp: Separating feature information for personalized federated learning via conditional policy[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023: 3249-3261.
[12]曹天涯,张雨静,贾俊杰,等.基于个性化梯度裁剪的联邦学习隐私保护算法[J/OL].计算机工程,1-12[2025-05-06].https://doi.org/10.19678/j.issn.1000-3428.0069644.
Cao T Y, Zhang Y J, Jia J J, et al. A Privacy Protection Algorithm for Federated Learning Based on Personalized Gradient Clipping[J/OL]. Computer Engineering, 1-12 [2025-05-06]. https://doi.org/10.19678/j.issn.1000-3428.0069644.
[13]李阳,姜毅,陈帅,等.多层超网络聚合的个性化联邦学习算法[J/OL].计算机工程,1-11[2025-05-06].https://doi.org/10.19678/j.issn.1000-3428.0070679.
Li Yang, Jiang Y, Chen S, et al. A Personalized Federated Learning Algorithm with Aggregation of Multilayer Hypernetworks[J/OL]. Computer Engineering, 1-11 [2025-05-06]. https://doi.org/10.19678/j.issn.1000-3428.0070679.
[14]Yuan X, Li P. On convergence of fedprox: Local dissimilarity invariant bounds, non-smoothness and beyond[J]. Advances in Neural Information Processing Systems, 2022, 35: 10752-10765.
[15]T Dinh C, Tran N, Nguyen J. Personalized federated learning with moreau envelopes[J]. Advances in neural information processing systems, 2020, 33: 21394-21405.
[16]Li R, Ma F, Jiang W, et al. Online federated multitask learning[C]//2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019: 215-220.
[17]Lin D, Guo Y, Sun H, et al. Fedcluster: A federated learning framework for cross-device private ecg classification[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022: 1-6.
[18]Reguieg H, El Hanjri M, El Kamili M, et al. A comparative evaluation of fedavg and per-fedavg algorithms for dirichlet distributed heterogeneous data[C]//2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM). IEEE, 2023: 1-6.
[19]Liu X, Li H, Xu G, et al. Adaptive privacy-preserving federated learning[J]. Peer-to-peer networking and applications, 2020, 13: 2356-2366.
[20]Shamsian A, Navon A, Fetaya E, et al. Personalized federated learning using hypernetworks[C]//International conference on machine learning. PMLR, 2021: 9489-9502.
[21]Li D, Wang J. Fedmd: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv:1910.03581, 2019.
[22]Zhao Y. Comparison of federated learning algorithms for image classification[C]//2023 2nd International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI). IEEE, 2023: 613-615.
[23]Khan A A, Khan A F, Ali H, et al. Personalized Federated Learning Techniques: Empirical Analysis[C]//2024 IEEE International Conference on Big Data (BigData). IEEE, 2024: 1333-1339.
[24]Li T, Hu S, Beirami A, et al. Ditto: Fair and robust federated learning through personalization[C]//International conference on machine learning. PMLR, 2021: 6357-6368.
[25]Xu J, Yan Y, Huang S L. Fedper++: Toward improved personalized federated learning on heterogeneous and imbalanced data[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 01-08.
[26]Nocentini O, Kim J, Bashir M Z, et al. Image classification using multiple convolutional neural networks on the fashion-MNIST dataset[J]. Sensors, 2022, 22(23): 9544.
[27]Zheng Y Y, Huang H X, Chen J M. Comparative analysis of various models for image classification on Cifar-100 dataset[C]//Journal of Physics: Conference Series. IOP Publishing, 2024, 2711(1): 012015.
[28]Huynh E. Vision transformers in 2022: An update on tiny imagenet[J]. arXiv preprint arXiv:2205.10660, 2022.
[29]Kumar P, Chauhan S, Awasthi L K. Human activity recognition (har) using deep learning: Review, methodologies, progress and future research directions[J]. Archives of Computational Methods in Engineering, 2024, 31(1): 179-219.Collins L, Hassani H, Mokhtari A, et al. Fedavg with fine tuning: Local updates lead to representation learning[J]. Advances in Neural Information Processing Systems, 2022, 35: 10572-10586.
[30]Xue R, Xue K, Zhu B, et al. Differentially private federated learning with an adaptive noise mechanism[J]. IEEE Transactions on Information Forensics and Security, 2023, 19: 74-87.
[31]Choi B, Sohn J, Han D J, et al. Communication-computation efficient secure aggregation for federated learning[J]. arXiv preprint arXiv:2012.05433, 2020.
[32]Di X, Fan X, Chen L, et al. Communication-privacy-accuracy trade-offs in federated learning for non-IID data with shuffle model[J]. Knowledge-Based Systems, 2025: 113872.
[33]Noble M, Bellet A, Dieuleveut A. Differentially private federated learning on heterogeneous data[C]//International conference on artificial intelligence and statistics. PMLR, 2022: 10110-10145.
[34]Liu J, Liu Y, Zhang Q. A weight initialization method based on neural network with asymmetric activation function[J]. Neurocomputing, 2022, 483: 171-182.
|