[1] LEE J D , LI W C , SHEN J H ,et al.Multi-robotic arms automated production line[C]//International Conference on Control and Automation.IEEE, 2018.DOI:10.1109/iccar.2018.8384639.
[2] WANG Y, HONG X, MA Z, et al. Towards Practical Multi-Robot Hybrid Tasks Allocation for Autonomous Cleaning[J]. CoRR, 2023, abs/2303.06531.
[3] ARAI T, PAGELLO E, PARKER L E. Advances in multi-robot systems[J]. IEEE Transactions on robotics and automation, 2002, 18(5): 655-661.
[4] RIZK Y, AWAD M, TUNSTEL E W. Cooperative heterogeneous multi-robot systems: A survey[J]. ACM Computing Surveys (CSUR), 2019, 52(2): 1-31.
[5] KIENER J, VON STRYK O. Towards cooperation of heterogeneous, autonomous robots: A case study of humanoid and wheeled robots[J]. Robotics and Autonomous Systems, 2010, 58(7): 921-929.
[6] SINGH I, BLUKIS V, MOUSAVIAN A, et al. Progprompt: Generating situated robot task plans using large language models[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023: 11523-11530.
[7] BROHAN A, CHEBOTAR Y, FINN C, et al. Do as i can, not as i say: Grounding language in robotic affordances[C]//Conference on robot learning. PMLR, 2023: 287-318.
[8] MANDI Z, JAIN S, SONG S. Roco: Dialectic multi-robot collaboration with large language models[C]//2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024: 286-299.
[9] LIU K, TANG Z, WANG D, et al. COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models[J]. CoRR, 2024, abs/2409.15146.
[10] KANNAN S S, VENKATESH V L N, MIN B C. Smart-llm: Smart multi-agent robot task planning using large language models[C]//2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024: 12140-12147.
[11] WANG L, MA C, FENG X, et al. A survey on large language model based autonomous agents[J]. Frontiers of Computer Science, 2024, 18(6): 186345.
[12] 王文晟,谭宁,黄凯,等. 基于大模型的具身智能系统综述[J]. 自动化学报,2025,51(1):1-19. DOI:10.16383/j.aas.c240542.
WANG Wensheng, HUANG Kai, et al. Embodied Intelligence Systems Based on Large Models: A Survey[J]. Acta Automatica Sinica,2025,51(1):1-19. DOI:10.16383/j.aas.c240542.
[13] GAO S, DWIVEDI-YU J, YU P, et al. Efficient Tool Use with Chain-of-Abstraction Reasoning[J]. CoRR, 2024, abs/2401.17464.
[14] MOTES J, SANDSTRÖM R, LEE H, et al. Multi-robot task and motion planning with subtask dependencies[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3338-3345.
[15] BRAQUET M, BAKOLAS E. Greedy decentralized auction-based task allocation for multi-agent systems[J]. IFAC-PapersOnLine, 2021, 54(20): 675-680.
[16] LIU X, LI X, GUO D, et al. Embodied Multi-Agent Task Planning from Ambiguous Instruction[C]//Robotics: Science and Systems. 2022.
[17] 张昌盛. 从具身智能到具身智能体[J]. 北京工业大学学报(社会科学版),2024,24(6):154-165. DOI:10.12120/bjutskxb202406154.
ZHANG Changsheng. From embodied intelligence to embodied agent[J]. Journal of Beijing University of Technology (Social Sciences Edition),2024,24(6):154-165. DOI:10.12120/bjutskxb202406154.
[18] 张伟男,刘挺. 具身智能的研究与应用[J]. 智能系统学报,2025,20(1):255-262. DOI:10.11992/tis.202406044.
ZHANG Weinan, LIU Ting. Research and application of embodied intelligence[J]. CAAI Transactions on Intelligent Systems,2025,20(1):255-262. DOI:10.11992/tis.202406044.
[19] 邵宏,谢大雄. 具身智能机器人技术[J]. 中兴通讯技术,2024,30(z1):40-44. DOI:10.12142/ZTETJ.2024S1006.
SHAO Hong, Xie Daxiong. Embodied Intelligent Robotics[J]. ZTE Communications,2024,30(z1):40-44. DOI:10.12142/ZTETJ.2024S1006.
[20] TOPCUOGLU H, HARIRI S, WU M Y. Task scheduling algorithms for heterogeneous processors[C]//Proceedings. Eighth Heterogeneous Computing Workshop (HCW'99). IEEE, 1999: 3-14.
[21] LIN F, LA MALFA E, HOFMANN V, et al. Graph-enhanced Large Language Models in Asynchronous Plan Reasoning[J]. CoRR, 2024, abs/2402.02805.
[22] ACHIAM J, ADLER S, AGARWAL S, et al. Gpt-4 technical report[J]. arXiv preprint arXiv:2303.08774, 2023.
[23] TOUVRON H, MARTIN L, STONE K, et al. Llama 2: Open foundation and fine-tuned chat models[J]. arXiv preprint arXiv:2307.09288, 2023.
[24] JIANG F. Identifying and mitigating vulnerabilities in llm-integrated applications[D]. University of Washington, 2024.
[25] CHEN Y, ARKIN J, DAWSON C, et al. Autotamp: Autoregressive task and motion planning with llms as translators and checkers[C]//2024 IEEE International conference on robotics and automation (ICRA). IEEE, 2024: 6695-6702.
[26] KOLVE E, MOTTAGHI R, HAN W, et al. Ai2-thor: An interactive 3d environment for visual ai[J]. arXiv preprint arXiv:1712.05474, 2017.
[27] HURST A, LERER A, GOUCHER A P, et al. Gpt-4o system card[J]. arXiv preprint arXiv:2410.21276, 2024.
|