[1]He Y, Chen J. User location privacy protection m echanism for location-based services[J]. Digital communications and networks, 2021, 7(2): 264-276.
[2]Agarwal R, Hussain M. Generic framework for privacy preservation in cyber-physical systems[C]//Progress in Advanced Computing and Intelligent Engineering: Proceedings of ICACIE 2019, Volume 1. Springer Singapore, 2021: 257-266.
[3]Liu J, Wang S. All-dummy k-anonymous privacy protection algorithm based on location offset[J]. Computing, 2022, 104(8): 1739-1751.
[4]Cheng S, Ya-dong Z, Wei-ping P, et al. Research on location privacy protection scheme based on similar trajectory replacement[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(1): 135.
[5]丁红发, 唐明丽, 刘海, 等. 邻居子图扰动下的 k-度匿名隐私保护模型[J]. 西安电子科技大学学报, 2023, 50(4): 180-193.
Ding H F, Tang M L, Liu H, et al. Model for protection of k-degree anonymity privacy under neighbor subgraph disturbance[J]. Journal of Xidian University, 2023, 50(4): 180-193.
[6]Husnoo M A, Anwar A, Chakrabortty R K, et al. Differential privacy for IoT-enabled critical infrastructure: A comprehensive survey[J]. IEEE access, 2021, 9: 153276-153304.
[7]Liu Q, Yu J, Han J, et al. Differentially private and utility-aware publication of trajectory data[J]. Expert Systems with Applications, 2021, 180: 115120.
[8]申艳梅,张玉阳,申自浩,等.基于BIGRU的轨迹数据发布隐私保护方案[J].重庆邮电大学学报(自然科学版),2023,35(06):1011-1019.
Shen Y M, Zhang Y Y, Shen Z H, et al. Privacy Protection Scheme for Trajectory Data Publishing Based on BiGRU[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(06): 1011-1019.
[9]申自浩,唐雨雨,王辉,等.基于聚类和深度学习的车联网轨迹隐私保护机制[J].浙江大学学报(工学版),2024,58(01):20-28.
Shen Z H, Tang Y Y, Wang H, et al. Clustering and deep learning based trajectory privacy protection mechanism for Internet of vehicles[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(01): 20-28.
[10]Rao J, Gao S, Kang Y, et al. LSTM-TrajGAN: A deep learning approach to trajectory privacy protection[J]. arXiv preprint arXiv:2006.10521, 2020.
[11]Hu J, Liu Z, Chen J, et al. A novel deep learning–based fault diagnosis algorithm for preventing protection malfunction[J]. International Journal of Electrical Power & Energy Systems, 2023, 144: 108622.
[12]Hoge E A, Bui E, Mete M, et al. Mindfulness-based stress reduction vs escitalopram for the treatment of adults with anxiety disorders: a randomized clinical trial[J]. JAMA psychiatry, 2023, 80(1): 13-21.
[13]Sweeney L. k-anonymity: A model for protecting privacy[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2002, 10(05): 557-570.
[14]Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis[C]//Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3. Springer Berlin Heidelberg, 2006: 265-284.
[15]Yao L, Chen Z, Hu H, et al. Privacy preservation for trajectory publication based on differential privacy[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(3): 1-21.
[16]Gursoy M E, Liu L, Truex S, et al. Differentially private and utility preserving publication of trajectory data[J]. IEEE Transactions on Mobile Computing, 2018, 18(10): 2315-2329.
[17]Cunningham T, Cormode G, Ferhatosmanoglu H, et al. Real-world trajectory sharing with local differential privacy[J]. arXiv preprint arXiv:2108.02084, 2021.
[18]Huang Y, Zhang J, Hou H, et al. GeoPM-DMEIRL: A deep inverse reinforcement learning security trajectory generation framework with serverless computing[J]. Future Generation Computer Systems, 2024, 154: 123-139.
[19]Yuan S, Pi D, Zhao X, et al. Differential privacy trajectory data protection scheme based on R-tree[J]. Expert Systems with Applications, 2021, 182: 115215.
[20]Ouyang K, Shokri R, Rosenblum D S, et al. A non-parametric generative model for human trajectories[C]//IJCAI. 2018, 18: 3812-3817.
[21]Ma X, Ding Z, Zhang X. ST-TrajGAN: A synthetic trajectory generation algorithm for privacy preservation[J]. Future Generation Computer Systems, 2024, 161: 226-238.
[22]Zhang J, Huang Y, Huang Q, et al. Hasse sensitivity level: A sensitivity-aware trajectory privacy-enhanced framework with reinforcement learning[J]. Future Generation Computer Systems, 2023, 142: 301-313.
[23]Merhi J, Buchholz E, Kanhere S S. Synthetic Trajectory Generation Through Convolutional Neural Networks[C]//2024 21st Annual International Conference on Privacy, Security and Trust (PST). IEEE, 2024: 1-12.
[24]Zhang J, Huang Q, Huang Y, et al. DP-TrajGAN: A privacy-aware trajectory generation model with differential privacy[J]. Future Generation Computer Systems, 2023, 142: 25-40.
[25]Gers F A, Schraudolph N N, Schmidhuber J. Learning precise timing with LSTM recurrent networks[J]. Journal of machine learning research, 2002, 3(Aug): 115-143.
[26]Shin J, Song Y, Ahn J, et al. TCAC-GAN: synthetic trajectory generation model using auxiliary classifier generative adversarial networks for improved protection of trajectory data[C]//2023 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2023: 314-315.
[27]Yang X, Zhang C. A Location Trajectory Privacy Protection Method Based on Generative Adversarial Network and Attention Mechanism[J]. Computers, Materials & Continua, 2024, 81(3).
[28]Hu J, He J, Zhu N, et al. Trajectory privacy preservation model based on LSTM-DCGAN[J]. Future Generation Computer Systems, 2025, 163: 107496.
|