[1] LIN R, FOGARTY C E, MA B, et al. Identification of
ferroptosis genes in immune infiltration and prognosis in
thyroid papillary carcinoma using network analysis[J].
BMC genomics, 2021, 22: 1-16.
[2] BOUCAI L, ZAFEREO M, CABANILLAS M E.
Thyroid cancer: a review[J]. Jama, 2024, 331(5):
425-435.
[3] LATIA M, BORLEA A, MIHUTA M S, et al. Impact of
ultrasound elastography in evaluating Bethesda category
IV thyroid nodules with histopathological correlation[J].
Frontiers in Endocrinology, 2024, 15: 1393982.
[4] ORTIZ S H C, CHIU T, FOX M D. Ultrasound image
enhancement: A review[J]. Biomedical Signal Processing
and Control, 2012, 7(5): 419-428.
[5] ZHOU Y T, YANG T Y, HAN X H, et al. Thyroid-DETR:
Thyroid nodule detection model with transformer in
ultrasound images[J]. Biomedical Signal Processing and
Control, 2024, 98: 106762.
[6] WANG Y, GE X, MA H, et al. Deep learning in medical
ultrasound image analysis: a review[J]. IEEE Access,
2021, 9: 54310-54324.
[7] 石军,王天同,朱子琦,等.基于深度学习的医学图像分割
方 法 综 述 [J]. 中 国 图 象 图 形 学
报,2025,30(06):2161-2186.
SHI J, WANG T T,ZHU Z Q, et al. Deep learning-based
medical image segmentation methods [J]. Journal of
Image and Graphics,2024,51(05):100-107.
[8] VASWANI A. Attention is all you need[J]. Advances in
Neural Information Processing Systems, 2017.
[9] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH
N, et al. Unet++: A nested u-net architecture for medical
image segmentation[C]//Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical
Decision Support: 4th International Workshop, DLMIA
2018, and 8th International Workshop, ML-CDS 2018,
Held in Conjunction with MICCAI 2018, Granada, Spain,
September 20, 2018, Proceedings 4. Springer
International Publishing, 2018: 3-11.
[10] PAN H, ZHOU Q, LATECKI L J. Sgunet: Semantic
guided unet for thyroid nodule segmentation[C]//2021
IEEE 18th International Symposium on Biomedical
Imaging (ISBI). IEEE, 2021: 630-634.
[11] BI H, CAI C, SUN J, et al. BPAT-UNet: Boundary
preserving assembled transformer UNet for ultrasound
thyroid nodule segmentation[J]. Computer methods and
programs in biomedicine, 2023, 238: 107614.
[12] RONNEBERGER O, FISCHER P, BROX T. U-net:
Convolutional
networks
segmentation[C]//Medical
for
image
biomedical
computing
image
and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18. Springer International
Publishing, 2015: 234-241.
[13] OZCAN A, TOSUN Ö, DONMEZ E, et al.
Enhanced-TransUNet for ultrasound segmentation of
thyroid nodules[J]. Biomedical Signal Processing and
Control, 2024, 95: 106472.
[14] ZHOU H, LUO Y, GUO J, et al. Double U-Net:
semi-supervised
ultrasound
image
segmentation
combining CNN and transformer’s U-shaped network[J].
The Journal of Supercomputing, 2025, 81(5): 659.
[15] GONG H, CHEN J, CHEN G, et al. Thyroid region prior
guided attention for ultrasound segmentation of thyroid
nodules[J]. Computers in biology and medicine, 2023,
155: 106389.
[16] HEIDARI M, KOLAHI S G, KARIMIJAFARBIGLOO S,
et al. Computation-Efficient Era: A Comprehensive
Survey of State Space Models in Medical Image
Analysis[J]. arXiv preprint arXiv:2406.03430, 2024.
[17] YANG X, WANG Q, ZHANG K, et al. MSV-Mamba: A
Multiscale Vision Mamba Network for Echocardiography
Segmentation[J]. arXiv preprint arXiv:2501.07120, 2025.
[18] LIU Y, TIAN Y, ZHAO Y, et al. Vmamba: Visual state
space model[C]//The Thirty-eighth Annual Conference
on Neural Information Processing Systems. 2024.
[19] RUAN J, XIANG S. Vm-unet: Vision mamba unet for
medical
image segmentation[J]. arXiv preprint
arXiv:2402.02491, 2024.
[20] DANG D Q T. Advancing brain tumor segmentation via
Vision Mamba and soft labels[D]. DQT Dang, 2025.
[21] GUO M H, LIU Z N, MU T J, et al. Beyond
self-attention: External attention using two linear layers
for visual tasks[J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022, 45(5):
5436-5447.
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation
networks[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018:
7132-7141.
[23] ANGULO J. Hierarchical laplacian and its spectrum in
ultrametric
image
processing[C]//MathematicalMorphology and Its Applications to Signal and Image
Processing: 14th International Symposium, ISMM 2019,
Saarbrücken, Germany, July 8-10, 2019, Proceedings 14.
Springer International Publishing, 2019: 29-40.
[24] ZHU L, LIAO B, ZHANG Q, et al. Vision mamba:
Efficient visual representation learning with bidirectional
state space model[J]. arXiv preprint arXiv:2401.09417,
2024.
[25] GU A, DAO T. Mamba: Linear-time sequence modeling
with
selective
state
arXiv:2312.00752, 2023.
spaces[J].
arXiv preprint
[26] ZHANG C, ZHOU X, CUI Y, et al. HCMUNet: A hybrid
CNN and Mamba network for medical ultrasound image
segmentation[J]. Available at SSRN 5263829.
[27] WANG D, ZHAO W, CUI K, et al. VMC‐UNet: A Vision
Mamba‐CNN U‐Net for Tumor Segmentation in Breast
Ultrasound Image[J]. International Journal of Imaging
Systems and Technology, 2024, 34(6): e23222.
[28] ZOU S, ZHANG M, FAN B, et al. SkinMamba: A
precision skin lesion segmentation architecture with
cross-scale global state modeling and frequency
boundary guidance[J]. arXiv preprint arXiv:2409.10890,
2024.
[29] PEDRAZA L, VARGAS C, NARVÁEZ F, et al. An open
access thyroid ultrasound image database[C]//10th
International symposium on medical information
processing and analysis. SPIE, 2015, 9287: 188-193.
[30] LONG J, SHELHAMER E, DARRELL T. Fully
convolutional
networks
for
semantic
segmentation[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015:
3431-3440.
[31] RAJAKUMAR G, LEELA R S J, DARNEY P E, et al.
Seg-net: Automatic lung infection segmentation of
covid-19 from ct images[C]//2021 5th International
Conference on Trends in Electronics and Informatics
(ICOEI). IEEE, 2021: 739-744.
[32] CHEN J, MEI J, LI X, et al. TransUNet: Rethinking the
U-Net architecture design for medical image
segmentation through the lens of transformers[J].
Medical Image Analysis, 2024, 97: 103280.
[33] ZHANG C, WANG L, WEI G, et al. A dual-branch and
dual attention transformer and CNN hybrid network for
ultrasound
image segmentation[J]. Frontiers in
Physiology, 2024, 15: 1432987.
[34] LI Z, ZHENG Y, SHAN D, et al. Scribformer:
Transformer makes cnn work better for scribble-based
medical image segmentation[J]. IEEE Transactions on
Medical Imaging, 2024, 43(6): 2254-2265.
[35] HAN X, LI X, SHANG J, et al. MambaEviScrib: Mamba
and Evidence-Guided consistency enhance CNN
robustness for Scribble-Based weakly supervised
ultrasound image segmentation[J]. arXiv preprint
arXiv:2409.19370, 2024.
[36] DIALAMEH
M,
RAJABZADEH
H,
SADEGHI-GOUGHARI M, et al. E2E-Swin-Unet++: An
enhanced End-to-End Swin-Unet architecture with dual
decoders for PTMC segmentation[J]. arXiv preprint
arXiv:2410.18239, 2024.
[37] PROCHAZKA A, ZEMAN J. Thyroid nodule
segmentation in ultrasound images using U-Net with
ResNet encoder: achieving state-of-the-art performance
on all public datasets[J]. AIMS Medical Science, 2025,
12(2): 124-144.
[38] GOWDA S N, CLIFTON D A. CC-SAM: SAM with
cross-feature attention and context for ultrasound image
segmentation[C]//European Conference on Computer
Vision. Springer, Cham, 2025: 108-124.
[39] HUANG K, ZHOU T, FU H, et al. Learnable Prompting
SAM-induced
Knowledge
Distillation
for
Semi-supervised Medical Image Segmentation[J]. IEEE
Transactions on Medical Imaging, 2025. [40] BI H, DONG Z, SUN J, et al. PEW-SegDiff: Feature
Pyramids Edge-Weighted Diffusion Segmentation model
for ultrasound thyroid nodule[J]. Biomedical Signal
Processing and Control, 2025, 102: 107346.
|