[1] HOJJATI H,Ho T K K,ARMANFARD N.Self-supervised anomaly detection in computer vision and beyond: A survey and outlook[J].Neural Networks,2024:172.
[2] 吕承侃,沈飞,张正涛,等.图像异常检测研究现状综述[J]. 自动化学报,2022,48(6): 1402−1428.
LV C K, SHEN F, ZHANG Z T, et al. Review of image anomaly detection[J]. Acta Automatica Sinica, 2022, 48(6): 1402−1428.
[3] 张安勤,丁志锋. 融合动态图嵌入和Transformer自编码器的网络异常检测[J]. 计算机工程,2025,51(4): 47-56.
ZHANG Anqin, DING Zhifeng. Network Anomaly Detection Integrating Dynamic Graph Embedding and Transformer Autoencoder[J]. Computer Engineering, 2025, 51(4): 47-56.
[4] MADAN N , RISTEA N C , IONESCU R T,et al.Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(1):525-542.
[5] MEI S, YANG H, YIN Z. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE transactions on instrumentation and measurement, 2018, 67(6): 1266-1277.
[6] KWON G,PRABHUSHANKAR M, TEMEL D, et al. Backpropagated gradient representations for anomaly detection[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI. Springer, Cham, 2020: 206-226.
[7] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 1705-1714.
[8] JONGHEON J, YANG Z, TAEWAN K,et al. Winclip : Zero/few-shot anomaly classification and segmenta tion.[C]//CVPR 2023: 19606-19616.
[9] CHEN X , HAN Y , ZHANG J .A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD [EB/OL]. 2025.https://arxiv.org/abs/2305.17382.
[10] HUANG C , JIANG A , FENG J ,et al.Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images[C] //CVPR 2024.
[11] RADFORD A , KIM J W, HALLACYC, et al. Learning transferable visual models from natural language supervision[C]//International conference on machine learning. PMLR, 2021: 8748-8763.
[12] LI Z, WU X, DU H, et al. A Survey of State of the Art Large Vision Language Models : Alignment, Benchmark, Evaluations and Challenges[EB/OL]. 2025. arxiv:2501.02189.
[13] MORI Y, TAKAHASHI H, OKA R. Image-to-word transformation based on dividing and vector quantizing images with words[C]//First international workshop on multimedia intelligent storage and retrieval management. 1999: 2.
[14] FERGUS R, FEI-FEI L, PERONA P, et al. Learning object categories from Google's image search[C]//Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. IEEE. IEEE Computer Society 1730 Massachusetts Ave., NW Washington, DCUnited States,2005: 1816-1823.
[15] SOCHER R, GANJOO M, MANNING C D, et al. Zero-shot learning through cross-modal transfer[C]//Advances in neural information processing systems, 2013:26.
[16] LU J, BATRA D, PARIKH D, et al. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[C]// Advances in neural information processing systems, 2019: 32.
[17] TEWEL Y, SHALEV Y, SCHWARTZ I, et al. Zerocap: Zero-shot image-to-text generation for visual-semantic arithmetic[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). 2022: 17918-17928.
[18] GOH G , CAMMARATA N , VOSS C ,et al.Multimodal Neurons in Artificial Neural Networks[J].Distill, 2021.
[19] TAORI R, DAVE A, SHANKAR V, et al. Measuring robustness to natural distribution shifts in image classification[C]//Advances in Neural Information Processing Systems, 2020: 18583-18599.
[20] 郭新茹,宋丽娟,朱文倩,等.面向低样本的工业图像异常检测综述[J].计算机工程与应用,2025: 1-21.
GUO Xinru, SONG Lijuan, ZHU Wenqian,et al. A Review of Low-Shot Industrial Image Anomaly Detection[J]. Computer Engineering and Applications, 2025: 1-21.
[21] ZHOU Q, PANG G, TIAN Y, et al. Anomalyclip : Object-agnostic prompt learning for zero-shot anomaly detection[EB/OL]. 2025.arxiv:2310.18961.
[22] GU Z P, ZHU B, ZHU G, et al. FiLo++: Zero-/Few-Shot Anomaly Detection by Fused Fine-Grained Descriptions and Deformable Localization[EB/OL]. 2025. arxiv: 2501. 10067.
[23] HE H, SIU W C. Single image super-resolution using Gaussian process regression[C]// The 24th IEEE Conference on Computer Vision and Pattern Recognition.CVPR 2011.Colorado Springs, CO, USA, 2011: 449-456.
[24] SUN J, XU Z, SHUM H Y. Image super-resolution using gradient profile prior[C]//2008 IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2008: 1-8.
[25] TAI Y W, LIU S, BROWN M S, et al. Super resolution using edge prior and single image detail synthesis[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2010: 2400-2407.
[26] WANG Y, LIU Y, ZHAO S, et al. CAMixerSR: only details need more "attention"[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2024: 25837-25846.
[27] Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[28] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 1646-1654.
[29] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ: IEEE, 2017: 1132-1140.
[30] ZHANG Y , LI K, LI K , et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 294-310.
[31] DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 11065-11074.
[32] WU W, LIU S, XIA Y, et al. Dual residual attention network for image denoising[J]. Pattern Recognition, 2024, 149: 110291.
[33] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009: 248-255.
[34] BAID U, GHODASARA S, MOHAN S, et al. The RSNA–ASNR–MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification[EB/OL]. 2025. arxiv: 2107.02314.
[35] BAKAS S, AKBARI H, SOTIRAS A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 2017, 4(1): 170117.
[36] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 2015, 34(10): 1993-2024.
[37] BILIC P, CHRIST P, LI H B, et al. The liver tumor segmentation benchmark (LiTS)[J]. Medical Image Analysis, 2023, 84: 102680.
[38] LANDMAN B, XU Z, IGELSIAS J, et al. MICCAI multi-atlas labeling beyond the cranial vault—workshop and challenge[C]//Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault Workshop Challenge. 2015: 12.
[39] HU J, CHEN Y, YI Z. Automated segmentation of macular edema in OCT using deep neural networks[J]. Medical Image Analysis, 2019, 55: 216-227.
[40] KERMANY D S, GOLDBAUM M, CAI W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.
[41] BEJNORDI B E, VETA M, VAN DIEST P J, et al. Diagnostic assess ment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210.
[42] DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition. Cham: Springer International Publishing, 2020: 475-489.
[43] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 14298-14308.
[44] YI J, YOON S. Patch SVDD: patch-level SVDD for anomaly detection and segmentation[C]//Proceedings of the Asian Conference on Computer Vision. Berlin: Springer, 2020: 375-390.
[45] Guo K , Pan T , Jiang C ,et al.SD-MAD: Sign-Driven Few-shot Multi-Anomaly Detection in Medical Images [EB/OL]. 2025. arxiv: 2107.02314.
[46] DING C , PANG G, SHEN C . Catching both gray and black swans: open-set supervised anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 7378-7388.
[47] YAO X C, LI R Q, ZHANG J, et al. Explicit boundary guided semi-push-pull contrastive learning for supervised anomaly detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2023: 24490-24499.
[48] ZHANG X , XU M , QIU D ,et al. Mediclip: Adapting clip for few-shot medical image anomaly detection.[C]//In: MICCAI, Springer, Cham,2024: 458–468 (2024).
[49] GUDOVSKIY D A, ISHIZAKA S, KOZUKA K. CFlow - AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows [C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway, NJ: IEEE, 2022: 1819-1828.
[50] DENG H, LI X. Anomaly detection via reverse distillation from one-class embedding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 9727-9736.
[51] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 14298-14308.
[52] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 14902-14912.
|