[1]Gomez-Chova L, Tuia D, Moser G, et al. Multimodal Classification of Remote Sensing Images: A Review and Future Directions[J]. Proceedings of the IEEE, 2015, 103(9): 1560-1584.
[2]Fong A, Shu G, Mcdonogh B. Farm to Table: Applications for New Hyperspectral Imaging Technologies in Precision Agriculture, Food Quality and Safety[C]//CLEO: Applications and Technology, 2020.
[3]Gevaert C M, Suomalainen J, Tang J, et al. Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 3140-3146.
[4]Wang J, Zhang L, Tong Q, et al. The Spectral Crust project—Research on new mineral exploration technology[C]//2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2012: 1-4.
[5]Gao Y, Gao F, Dong J, et al. Change Detection From Synthetic Aperture Radar Images Based on Channel Weighting-Based Deep Cascade Network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11): 4517-4529.
[6]Lee R J, Steele S L. Military use of satellite communications, remote sensing, and global positioning systems in the war on terror[J]. J. Air L. & Com., 2014, 79: 69.
[7]白淑芬,宋铁成.基于双文本提示和多重相似性学习的多标签遥感图像分类[J].电讯技术,2025,65(01):35-42.
BAI S, SONG T. Multi-label remote sensing image classification based on dual-text prompts and multi-similarity learning[J]. Telecommunication Engineering, 2025, 65(01): 35-42.
[8]Sun L, Zhao G, Zheng Y, et al. Spectral–spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[9]Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
[10]Ham J, Chen Y, Crawford M M, et al. Investigation of the random forest framework for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 492-501.
[11]Pedergnana M, Marpu P R, Dalla Mura M, et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(7): 856-865.
[12]Jia S, Zhan Z, Zhang M, et al. Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(2): 1437-1452.
[13]Xu X, Li W, Ran Q, et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2): 937-949.
[14]Hang R, Li Z, Ghamisi P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939-4950.
[15]He M, Li B, Chen H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C] //2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 3904-3908.
[16]Zhao X, Tao R, Li W, et al. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7355-7370.
[17]hu F, Shi C, Shi K, et al. Joint Classification of Hyperspectral and LiDAR Data Using Hierarchical Multi-Modal Feature Aggregation Based Multi-Head Axial Attention Transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 1-17.
[18] 金学鹏,高峰,石晓晨,等.针对多源遥感图像分类的门控跨模态聚合网络[J].中国图象图形学报,2025,30(03):883-894.
Jin, X., Gao, F., Shi, X., et al. Gated cross-modal aggregation network for multisource remote sensing image classification[J]. Journal of Image and Graphics, 2025, 30(03): 883-894.
[19]Hong D, Han Z, Yao J, et al. SpectralFormer: Rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-15.
[20]Sun L, Zhao G, Zheng Y, et al. Spectral–spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[21]Xue Z, Yu X, Tan X, et al. Multiscale deep learning network with self-calibrated convolution for hyperspectral and LiDAR data collaborative classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16.
[22]Ding K, Lu T, Fu W, et al. Global–local transformer network for HSI and LiDAR data joint classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[23]Song T, Zeng Z, Gao C, et al. Joint Classification of Hyperspectral and LiDAR Data Using Height Information Guided Hierarchical Fusion-and-Separation Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-15.
[24]Chang H, Bi H, Li F, et al. Deep symmetric fusion transformer for multimodal remote sensing data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-15.
[25]Liao D, Wang Q, Lai T, et al. Joint classification of hyperspectral and LiDAR data base on mamba[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-15.
[26]白玉,吴昊琦,张丽丽,等. SpiralMamba:一种用于高光谱图像分类的轻量级Mamba网络[J/OL].电讯技术,1-10.
Bai, Y., Wu, H., Zhang, L., et al. SpiralMamba: A lightweight Mamba network for hyperspectral image classification[J/OL]. Telecommunication Engineering, 1-10. [2025-05-14].
[27]Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv:2312.00752, 2023.
[28]Hong D, Gao L, Hang R, et al. Deep encoder–decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
[29]Roy S K, Deria A, Hong D, et al. Multimodal fusion transformer for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-20.
[30]Yao J, Zhang B, Li C, et al. Extended vision transformer (ExViT) for land use and land cover classification: A multimodal deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15.
[31]Fang S, Li K, Li Z. S²ENet: Spatial–spectral cross-modal enhancement network for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
[32]Mohla S, Pande S, Banerjee B, et al. Fusatnet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and lidar classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020: 92-93.
[33]Sun L, Wang X, Zheng Y, et al. Multiscale 3-D–2-D mixed CNN and lightweight attention-free transformer for hyperspectral and LiDAR classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-16.
[34]Roy S K, Sukul A, Jamali A, et al. Cross hyperspectral and LiDAR attention transformer: An extended self-attention for land use and land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-15.
|