[1] 黄雯珂,滕飞,王子丹,等.基于深度学习的图像分割综述
[J].计算机科学,2024,51(02):107-116.
HUANG Wenke, TENG Fei, WANG Zidan, FENG
Li. Image Segmentation Based on Deep Learning:A Sur
vey[J]. Computer Science, 2024, 51(2): 107-116.
https://doi.org/10.11896/jsjkx.230900002.
[2] Long J, Shelhamer E, Darrell T. Fully convolutional net
works for semantic segmentation[C]//Proceedings of the
IEEE conference on computer vision and pattern recogni
tion. 2015: 3431-3440.
[3] Xie E, Wang W, Yu Z, et al. SegFormer: Simple and effi
cient design for semantic segmentation with transform
ers[J]. Advances in neural information processing sys
tems, 2021, 34: 12077-12090.
[4] Zhao L, Zhou H, Zhu X, et al. Lif-seg: Lidar and camera
image fusion for 3d lidar semantic segmentation[J]. IEEE
Transactions on Multimedia, 2023, 26: 1158-1168.
[5] Li J, Dai H, Ding Y. Self-distillation for robust lidar se
mantic
segmentation
in
autonomous
driv
ing[C]//European conference on computer vision. Cham:
Springer Nature Switzerland, 2022: 659-676.
[6] 张欢, 仇大伟, 冯毅博, 刘静. U-Net 模型改进及其在
医学图像分割上的研究综述[J]. 激光与光电子学进展,
2022, 59(2): 0200005.
Huan Zhang, Dawei Qiu, Yibo Feng, Jing Liu. Improved
U-Net Models and Its Applications in Medical Image
Segmentation: A Review[J]. Laser & Optoelectronics
Progress, 2022, 59(2): 0200005.
[7] 林畅, 郭伟, 任哲聪, 金海波. 基于Transformer的目标
跟踪与分割统一算法[J]. 计算机工程, 2024, 50(9):
130-141.
LIN Chang, GUO Wei, REN Zhecong, JIN Haibo. Unifi
cation Algorithm for Object Tracking and Segmentation
Based on Transformer[J]. Computer Engineering, 2024,
50(9): 130-141.
[8] Ainetter S, Fraundorfer F. End-to-end trainable deep
neural network for robotic grasp detection and semantic
segmentation from rgb[C]//2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE,
2021: 13452-13458.
[9] 彭大鑫, 甄彤, 李智慧. 低光照图像增强研究方法综述
[J]. 计算机工程与应用, 2023, 59(18): 14-27.
PENG Daxin, ZHEN Tong, LI Zhihui. Survey of Re
search Methods for Low Light Image Enhancement[J].
Computer Engineering and Applications, 2023, 59(18):
14-27.
[10] Ha Q, Watanabe K, Karasawa T, et al. MFNet: Towards
real-time semantic segmentation for autonomous vehicles
with multi-spectral scenes[C]//2017 IEEE/RSJ Interna
tional Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017: 5108-5115.
[11] Shen Z, Wang J, Weng Y, et al. ECFNet: efficient
cross-layer fusion network for real time RGB-thermal
urban scene parsing[J]. Digital Signal Processing, 2024,
151: 104579.
[12] Sun Y, Zuo W, Liu M. RTFNet: RGB-thermal fusion
network for semantic segmentation of urban scenes[J].
IEEE Robotics and Automation Letters, 2019, 4(3):
2576-2583.
[13] Sun Y, Zuo W, Yun P, et al. FuseSeg: Semantic segmenta
tion of urban scenes based on RGB and thermal data fu
sion[J]. IEEE Transactions on Automation Science and
Engineering, 2020, 18(3): 1000-1011.
[14] Ronneberger O, Fischer P, Brox T. U-net: Convolutional
networks for biomedical image segmentation[C]//Medical
image computing and computer-assisted interven
tion–MICCAI 2015: 18th international conference, Mu
nich, Germany, October 5-9, 2015, proceedings, part III
18. Springer international publishing, 2015: 234-241.
[15] Zhang Q, Zhao S, Luo Y, et al. ABMDRNet: Adap
tive-weighted bi-directional modality difference reduction
network
for
RGB-T
semantic
segmenta
tion[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021:
2633-2642.
[16] Deng F, Feng H, Liang M, et al. FEANet: Fea
ture-enhanced attention network for RGB-thermal re
al-time semantic segmentation[C]//2021 IEEE/RSJ inter
national conference on intelligent robots and systems
(IROS). IEEE, 2021: 4467-4473.
[17] Zhou W, Liu J, Lei J, et al. GMNet: Graded-feature mul
tilabel-learning network for RGB-thermal urban scene
semantic segmentation[J]. IEEE Transactions on Image
Processing, 2021, 30: 7790-7802.
[18] Misra D, Nalamada T, Arasanipalai A U, et al. Rotate to
attend:
Convolutional
triplet
attention
mod
ule[C]//Proceedings of the IEEE/CVF winter conference
on applications of computer vision. 2021: 3139-3148.
[19] Lan X, Gu X, Gu X. MMNet: Multi-modal multi-stage
network for RGB-T image semantic segmentation[J]. Ap
plied Intelligence, 2022, 52(5): 5817-5829.
[20] Wang Y, Lu T, Yao Y, et al. Learning to hallucinate face in
the dark[J]. IEEE Transactions on Multimedia, 2023, 26:
2314-2326.
[21] Zhou Z, Wu S, Zhu G, et al. Channel and spatial rela
tion-propagation network for RGB-thermal semantic
segmentation[J]. arXiv preprint arXiv:2308.12534, 2023.
[22] Feng Z, Guo Y, Sun Y. CEKD: Cross-modal
edge-privileged knowledge distillation for semantic scene
understanding using only thermal images[J]. IEEE Ro
botics and Automation Letters, 2023, 8(4): 2205-2212.
[23] Li P, Chen J, Lin B, et al. Residual spatial fusion network
for RGB-thermal semantic segmentation[J]. Neurocom
puting, 2024, 595: 127913.
[24] Finder S E, Amoyal R, Treister E, et al. Wavelet convolu
tions for large receptive fields[C]//European Conference
on Computer Vision. Cham: Springer Nature Switzerland,
2024: 363-380.
[25] Shivakumar S S, Rodrigues N, Zhou A, et al. Pst900:
Rgb-thermal calibration, dataset and segmentation net
work[C]//2020 IEEE international conference on robotics
and automation (ICRA). IEEE, 2020: 9441-9447.
[26] Zhao S, Zhang Q. A feature divide-and-conquer network
for RGB-T semantic segmentation[J]. IEEE Transactions
on Circuits and Systems for Video Technology, 2022,
33(6): 2892-2905.
[27] Zhou W, Dong S, Xu C, et al. Edge-aware guidance fu
sion
network
for
rgb–thermal
scene
pars
ing[C]//Proceedings of the AAAI conference on artificial
intelligence. 2022, 36(3): 3571-3579.
[28] Zhou W, Dong S, Lei J, et al. MTANet: Multitask-aware
network with hierarchical multimodal fusion for RGB-T
urban scene understanding[J]. IEEE Transactions on In
telligent Vehicles, 2022, 8(1): 48-58.
[29] Xu C, Li Q, Jiang X, et al. Dual-space graph-based inter
action network for RGB-thermal semantic segmentation
in electric power scene[J]. IEEE Transactions on Circuits
and Systems for Video Technology, 2022, 33(4):
1577-1592.
[30] Yi, Shi, et al. "CCAFFMNet: Dual-spectral semantic
segmentation network with channel-coordinate attention
feature fusion module." Neurocomputing 482 (2022):
236-251.
[31] Wu W, Chu T, Liu Q. Complementarity-aware
cross-modal feature fusion network for RGB-T semantic
segmentation[J]. Pattern Recognition, 2022, 131: 108881.
[32] Zhou W, Lv Y, Lei J, et al. Embedded control gate fusion
and attention residual learning for RGB–thermal urban
scene parsing[J]. IEEE Transactions on Intelligent
Transportation Systems, 2023, 24(5): 4794-4803.
[33] Li G, Wang Y, Liu Z, et al. RGB-T Semantic Segmenta
tion With Location, Activation, and Sharpening[J]. IEEE
Transactions on Circuits and Systems for Video Technol
ogy, 2023, 33(3): 1223-1235.
[34] Li P, Chen J, Lin B, et al. Residual spatial fusion network
for RGB-thermal semantic segmentation[J]. Neurocom
puting, 2024, 595: 127913.
[35] Lv Y, Liu Z, Li G. Context-aware interaction network for
rgb-t semantic segmentation[J]. IEEE Transactions on
Multimedia, 2024, 26: 6348-6360.
|