[1] Li Shu, Yang Xi, Liu Haonan, et al, 2020. Seismic data denoising based on sparse and low-rank regularization. Energies 13.doi:10.3390/en13020372.
[2] Sollberger D, Greenhalgh S, Schmelzbach C, et al, 2018. 6-c polarization analysis using point measurements of translational and rotational ground-motion: theory and applications. Geophysical Journal International 213, 77–97. doi:10.1093/gji/ ggx542.
[3] 李彩芹,张华.小波变换与F-K联合滤波在面波分离中的应用[J].中国煤田地质,2007,(04):60-61+84.
(Li Caiqin, Zhang Hua, 2007. Application of wavelet transform and f-k combined filtering in surface wave separation. China Coal Geology, (4), 60-61+84.)
[4] 曾有良.Radon变换波场分离技术研究[D].中国石油大学,2007.
(Zeng Youliang, 2007. Research on radon transform wavefield separation technology [D]. China University of Petroleum.)
[5] 王伟奇,李振春,孙小东,等.地震处理领域面波压制技术现状及发展趋势[J].地球物理学进展,2022,37(03):1178-1188.
(Wang Weiqi, Li Zhenchun, Sun Xiaodong, et al, 2022. Current status and development trends of surface wave suppression technology in seismic processing. Progress in Geophysics, 37(3), 1178-1188.)
[6] Yang Xiaoming, Gao Yang, Zhang Wenzhong, et al, 2019. Polarization filtering method for suppressing surface wave in time-frequency domain. International Journal of Geosciences 10, 481–490. doi:10.4236/ijg.2019.104028.
[7] Liu Sixiu, Cheng Shijun, Alkhalifah T, 2024. Gabor-based learnable sparse representation for self-supervised denoising. IEEE Transactions on Geoscience and Remote Sensing 62. doi:10.1109/TGRS.2024.3353315.
[8] 袁力.基于双树复小波域主成分分析的地震面波压制方法[J].宁夏大学学报(自然科学版),2023,44(03):219-225.
(Yuan Li. Seismic surface wave suppression method based on principal component analysis in dual-tree complex wavelet domain[J]. Journal of Ningxia University (Natural Science Edition), 2023, 44(03): 219-225.)
[9] Zheng Jingjing, Yin Xingyao, Zhang Guangzhi, et al, 2010. The surface wave suppression using the second generation curvelet transform. Applied Geophysics 7, 325–335. doi:10.1007/s11770-010-0257-x.
[10] Hu Yue, Wang Limin, Cheng Feng, et al, 2016. Ground-roll noise extraction and suppression using high-resolution linear radon transform. Journal of Applied Geophysics 128, 8–17. doi:10.1016/j.jappgeo.2016.03.007.
[11] Hosseini S, Javaherian A, Hassani H, et al, 2015. Shearlet transform in aliased ground roll attenuation and its comparison with f-k filtering and curvelet transform. Journal of Geophysics and Engineering 12, 351–364. doi:10.1088/1742-2132/12/3/351.
[12] Zhao Yuxing, Li Yue, Dong Xintong, et al, 2019. Low-frequency noise suppression method based on improved dncnn in desert seismic data. IEEE Geoscience and Remote Sensing Letters 16, 811–815. doi:10.1109/LGRS.2018.2882058.
[13] Ma Xiao, Yao Gang, Yuan Sanyi, et al, 2024. Seismic coherent noise removal with residual network and synthetic seismic samples. IEEE Geoscience and Remote Sensing Letters 21. doi:10.1109/LGRS.2024.3359248.
[14] Ronneberger O, Fischer P, Brox T, 2015. U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention(MICCAI), pp. 234–241. doi:10.1007/978-3-662-54345-0_3.
[15] Li Juan, Qu Ruolan, Lu Changgang, 2023. Multiple attention mechanisms-based convolutional neural network for desert seismic denoising. Pure and Applied Geophysics 180, 2135–2155. doi:10.1007/s00024-023-03255-5.
[16] Vaswani A, Shazeer N, Parmar N, et al, 2017. Attention is all you need. Advances in Neural Information Processing Systems 30.
[17] Zhang Zhonghan, Qin Guihe, Sun Minghui, et al, 2023b. Self-supervised seismic random noise attenuation with spatial attention from a single section. IEEE Transactions on Geoscience and Remote Sensing 61. doi:10.1109/TGRS.2023.3294219.
[18] Wu Wencong, Liu Shijie, Xia Yuelong, et al, 2024. Dual residual attention network for image denoising. Pattern Recognition 149. doi:10.1016/j.patcog. 2024.110291.
[19] Guo Yuanqi, Fu Lihua, Li Hongwei. Seismic data interpolation based on multi-scale transformer[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
[20] Han Kai, Xiao An, Wu Enhua, et al, 2021. Transformer in transformer. Advances in Neural Information Processing Systems 34,15908–15919.
[21] Fan Qihang, Huang Huaibo, Chen Mingrui, et al. RMT: retentive networks meet vision transformers[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 5641-5651.
[22] Sun Yutao, Dong Li, Huang Shaohan, et al. Retentive network: a successor to transformer for large language models[J]. arXiv preprint arXiv:2307.08621, 2023.
[23] Yang Jiangnan, Liu Shuangli, Wu Jingjun, et al. Pinwheel-shaped convolution and scale-based dynamic loss for infrared small target detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2025, 39(9): 9202-9210.
[24] Li Junyi, Zhang Zhilu, Zuo Wangmeng. Rethinking Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2025, 39(5): 4788-4796.
[25] Zhang Yi, Li Dasong, Shi Xiaoyu, et al, 2023a.Kbnet: kernel basis network for image restoration. arXiv preprint arXiv:2303.02881.
|