[1].Sharma A, Johnson R, Engert F, et al. Point process latent variable models of larval zebrafish behavior[J]. Advances in Neural Information Processing Systems, 2018, 31.
[2].丁小欧,于晟健,王沐贤,等.基于相关性分析的工业时序数据异常检测.软件学报,2020,31(3):726-747
Ding X O, Yu S J, Wang M X, et al. Anomaly Detection on Industrial Time Series Based on Correlation Analysis. Journal of Software, 2020, 31(3): 726-747. (in Chinese)
[3].Fox E, Sudderth E, Jordan M, et al. Nonparametric Bayesian learning of switching linear dynamical systems[J]. Advances in neural information processing systems, 2008, 21.
[4].Linderman S, Johnson M, Miller A, et al. Bayesian learning and inference in recurrent switching linear dynamical systems[C]//Artificial intelligence and statistics. PMLR, 2017: 914-922.
[5].Dong Z, Seybold B, Murphy K, et al. Collapsed amortized variational inference for switching nonlinear dynamical systems[C] //International Conference on Machine Learning. PMLR, 2020: 2638-2647.
[6].Durbin J, Koopman S J. Time series analysis by state space methods[M]. Oxford University Press (UK), 2012.
[7].Ansari A F, Benidis K, Kurle R, et al. Deep explicit duration switching models for time series[J]. Advances in Neural Information Processing Systems, 2021, 34: 29949-29961.
[8].姚沁汝,唐九飞,于俊清,等.体育视频中的运动员检测与分割.软件学报,2015,26(S2):155-164
YAO Q R, TANG J F, YU J Q, et al. Player Detection and Segmentation in Sports Video. Journal of Software, 2015, 26(S2):155–164. (in Chinese)
[9].Richard A, Kuehne H, Iqbal A, et al. Neuralnetwork-viterbi: A framework for weakly supervised video learning[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018: 7386-7395.
[10].Huang D A, Fei-Fei L, Niebles J C. Connectionist temporal modeling for weakly supervised action labeling[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016: 137-153.
[11].Kuehne H, Richard A, Gall J. Weakly supervised learning of actions from transcripts[J]. Computer Vision and Image Understanding, 2017, 163: 78-89.
[12].Kuehne H, Richard A, Gall J. A hybrid RNN-HMM approach for weakly supervised temporal action segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 42(4): 765-779.
[13].Chang X, Tung F, Mori G. Learning discriminative prototypes with dynamic time warping[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 8395-8404.
[14].Souri Y, Fayyaz M, Minciullo L, et al. Fast weakly supervised action segmentation using mutual consistency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(10): 6196-6208.
[15].Lu Z, Elhamifar E. Set-supervised action learning in procedural task videos via pairwise order consistency[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 19903-19913.
[16].Zoubin Ghahramani. 2001. An introduction to hidden Markov models and Bayesian networks. International journal of pattern recognition and artificial intelligence 15, 01 (2001), 9–42.
[17].Murphy K P. Hidden semi-markov models (hsmms)[J]. unpublished notes, 2002, 2.
[18].Yu S Z. Hidden semi-Markov models[J]. Artificial intelligence, 2010, 174(2): 215-243.
[19].Shaj V, Buchler D, Sonker R, et al. Hidden parameter recurrent state space models for changing dynamics scenarios[J]. arXiv preprint arXiv:2206.14697, 2022.
[20].Gu A, Goel K, Ré C. Efficiently modeling long sequences with structured state spaces[J]. arXiv preprint arXiv:2111.00396, 2021.
[21].de Bézenac E, Rangapuram S S, Benidis K, et al. Normalizing kalman filters for multivariate time series analysis[J]. Advances in Neural Information Processing Systems, 2020, 33: 2995-3007.
[22].Fraccaro M, Kamronn S, Paquet U, et al. A disentangled recognition and nonlinear dynamics model for unsupervised learning[J]. Advances in neural information processing systems, 2017, 30.
[23].史明阳, 王鹏, 汪卫. 有监督时间序列分割与状态识别算法[J]. 计算机工程, 2020, 46(5): 131-138.
SHI M Y, WANG P, WANG W. Algorithm of Supervised Time Series Segmentation and State Recognition[J]. Computer Engineering, 2020, 46(5): 131-138. (in Chinese)
[24].陆怡, 王鹏, 汪卫. 基于子序列相似性的时间序列语义挖掘算法[J]. 计算机工程, 2022, 48(10): 88-94.
LU Y, WANG P, WANG W. Time-Series Semantic Mining Algorithm Based on Sub-Series Similarity[J]. Computer Engineering, 2022, 48(10): 88-94. (in Chinese)
[25].Liu Y, Magliacane S, Kofinas M, et al. Graph switching dynamical systems[C]//International Conference on Machine Learning. PMLR, 2023: 21867-21883.
[26].Balsells-Rodas C, Wang Y, Li Y. On the identifiability of Markov switching models[C]//ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative Modeling. 2023.
[27].刘贺贺,贺延俏,邓诗卓,等.基于Matrix Profile的时间序列分割技术改进.软件学报,2023,34(11):5267-5281
Liu H H, He Y Q, Deng S Z, et al. Improve-ment of Time Series Segmentation Technology Based on Matrix Profile. Journal of Software, 2023, 34(11): 5267-5281. (in Chinese)
[28].Ghoddoosian R, Dwivedi I, Agarwal N, et al. Weakly-supervised online action segmentation in multi-view instructional videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 13780-13790.
[29].Ghoddoosian R, Dwivedi I, Agarwal N, et al. Weakly-supervised action segmentation and unseen error detection in anomalous instructional videos[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 10128-10138.
[30].Rahaman R, Singhania D, Thiery A, et al. A generalized and robust framework for timestamp supervision in temporal action segmentation[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 279-296.
[31].Zhang R, Wang S, Duan Y, et al. Hoi-aware adaptive network for weakly-supervised action segmentation[C]//Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence. 2023: 1722-1730.
[32].Xu A, Zheng W S. Efficient and effective weakly-supervised action segmentation via action-transition-aware boundary alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 18253-18262.
[33].Richard A, Kuehne H, Gall J. Weakly supervised action learning with rnn based fine-to-coarse modeling[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2017: 754-763.
[34].Ding L, Xu C. Weakly-supervised action segmentation with iterative soft boundary assignment[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6508-6516.
[35].Chang C Y, Huang D A, Sui Y, et al. D3tw: Discriminative differentiable dynamic time warping for weakly supervised action alignment and segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3546-3555.
[36].Li J, Lei P, Todorovic S. Weakly supervised energy-based learning for action segmentation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 6243-6251.
[37].Lu Z, Elhamifar E. Weakly-supervised action segmentation and alignment via transcript-aware union-of-subspaces learning[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 8085-8095.
|