[1].黄燕君,高小红,张昊. Landsat遥感影像结合平、丰、枯水期青海湖近35年面积变化研究[J/OL]. 激光与光电子学进展,1-20[2025-05-21]. http://kns. cnki. net/kcms/detail/31. 1690. TN. 20250409. 1032. 084. html.Huang Yanjun, Gao Xiaohong, Zhang Hao. The Study of Qinghai Lake Area Changes Over the Past 35 Years Using Landsat Remote Sensing Images in Normal, Wet, and Dry Water Perioods[J/OL]. Laser & Optoelectronics Progress, 1-20[2025-05-21]. http://kns. cnki. net/kcms/detail/31. 1690. TN. 20250409. 1032. 084. html.
[2].陈军,刘延昭,曹立国,等.青藏高原湖泊变化遥感监测及水量平衡定量估算研究进展[J].冰川冻土,2022,44(04):1203-1215. Chen Jun, Liu Yanzhao, Cao Liguo, et al. A review on the research of remote sensing monitoring of lake changes andquantitative estimation of lake water balance in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2022,44(04):1203-1215.
[3].Wang X, Zhou G, Lv X, et al. Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information[J]. Remote Sensing, 2023, 15(1): 267.
[4].He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[5].Kumari S, Dey P, Ayala-Cabrera D, et al. Attention-Based ResNet for Accurate Water Body Classification Using Spectral Indices[C]//2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2024: 1-5.
[6].Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer international publishing, 2015: 234-241.
[7].Cao H, Tian Y, Liu Y, et al. Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion[J]. Scientific Reports, 2024, 14(1): 16132.
[8].Diakogiannis F I, Waldner F, Caccetta P, et al. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[9].Ashish V. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: I.
[10].Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022.
[11].Wang L, Li R, Duan C, et al. A novel transformer based semantic segmentation scheme for fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[12].Zhang C, Jiang W, Zhang Y, et al. Transformer and CNN hybrid deep neural network for semantic segmentation of very-high-resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-20.
[13].Lin A, Chen B, Xu J, et al. Ds-transunet: Dual swin transformer u-net for medical image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15.
[14].Chen B, Zou X, Zhang Y, et al. LEFormer: A hybrid CNN-transformer architecture for accurate lake extraction from remote sensing imagery[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024: 5710-5714.
[15].Ye Z, Huang J, Zhang Y, et al. DFLNet: Disentangled Feature Learning Network for Breast Cancer Ultrasound Image Segmentation[J]. Digital Signal Processing, 2025: 105331.
[16].Li Y, Liu Z, Yang J, et al. Wavelet transform feature enhancement for semantic segmentation of remote sensing images[J]. Remote Sensing, 2023, 15(24): 5644.
[17].Zeng Y, Li J, Zhao Z, et al. WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation[J]. Science Progress, 2024, 107(2): 00368504241232537.
[18].Yang Y, Yuan G, Li J. Sffnet: A wavelet-based spatial and frequency domain fusion network for remote sensing segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024.
[19].Li Q, Shen L. Wavesnet: Wavelet integrated deep networks for image segmentation[C]//Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Cham: Springer Nature Switzerland, 2022: 325-337.
[20].Yang X, Li S, Chen Z, et al. An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177: 238-262.
[21].Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018:
7132-7141.
[22]. 谢国波,黎逍,林志毅.面向无人机影像目标检测的Drone-DETR算法[J/OL].电光与控制,1-9[2025-04-30].http://kns.cnki.net/kcms/detail/41.1227.tn.20250325.1139.002.html.Xie Guobo, Li Xiao, Lin Zhiyi. Drone-DETR Algorithm for Drone Image Object Detection[J/OL]. Electronics Optics & Control, 1-9[2025-04-30]. http://kns.cnki.net/kcms/detail/41.1227.tn.20250202.1139.002.html.
[23].Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[24].Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
[25].Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[J]. Advances in neural information processing systems, 2021, 34: 12077-12090.
|