[1]Chen X, An J, Xiong Z, et al. Covert communications: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1173-1198.
[2]Alshamrani A, Myneni S, Chowdhary A, et al. A survey on advanced persistent threats: Techniques, solutions, challenges, and research opportunities[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1851-1877.
[3]Kaiser F K, Dardik U, Elitzur A, et al. Attack hypotheses generation based on threat intelligence knowledge graph[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(6): 4793-4809.
[4]Kotsias J, Ahmad A, Scheepers R. Adopting and integrating cyber-threat intelligence in a commercial organisation[J]. European Journal of Information Systems, 2023, 32(1): 35-51.
[5]Bianco D. Enterprise Detection & Response[EB/OL]. (2013-03-01)[2025-06-10]. https://detect-respond.blogspo.com/2013/03/the-pyramid-of-pain.html.
[6]Ramsdale A, Shiaeles S, Kolokotronis N. A comparative analysis of cyber-threat intelligence sources, formats and languages[J]. Electronics, 2020, 9(5): 824.
[7]Alam M T, Bhusal D, Park Y, et al. Looking beyond IoCs: Automatically extracting attack patterns from external CTI[C]//Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses. 2023: 92-108.
[8]Strom B E, Applebaum A, Miller D P, et al. Mitre att&ck: Design and philosophy[M]//Technical report. The MITRE Corporation, 2018.
[9]Kim H, Kim H. Comparative experiment on TTP classification with class imbalance using oversampling from CTI dataset[J]. Security and Communication Networks, 2022, 2022(1): 5021125.
[10]Nguyen T, Šrndić N, Neth A. Noise Contrastive Estimation-based Matching Framework for Low-Resource Security Attack Pattern Recognition[J]. arXiv preprint arXiv:2401.10337, 2024.
[11]Meng C, Jiang Z W, Wang Q Y, et al. Instantiating Standards: Enabling Standard-Driven Text TTP Extraction with Evolvable Memory[J]. arXiv preprint arXiv:2505.09261, 2025.
[12]Legoy V S M. Retrieving ATT&CK tactics and techniques in cyber threat reports[D]. University of Twente, 2019.
[13]Domschot E, Ramyaa R, Smith M R. Improving Automated Labeling for ATT&CK Tactics in Malware Threat Reports[J]. Digital Threats: Research and Practice, 2024, 5(1): 1-16.
[14]Rahman M R, Hezaveh R M, Williams L. What are the attackers doing now? Automating cyberthreat intelligence extraction from text on pace with the changing threat landscape: A survey[J]. ACM Computing Surveys, 2023, 55(12): 1-36.
[15]Fayyazi R, Taghdimi R, Yang S J. Advancing TTP analysis: harnessing the power of large language models with retrieval augmented generation[C]//2024 Annual Computer Security Applications Conference Workshops (ACSAC Workshops). IEEE, 2024: 255-261.
[16]Legoy V, Caselli M, Seifert C, et al. Automated retrieval of att&ck tactics and techniques for cyber threat reports[J]. arXiv preprint arXiv:2004.14322, 2020.
[17]Yu Z, Wang J F, Tang B H, et al. Tactics and techniques classification in cyber threat intelligence[J]. The Computer Journal, 2023, 66(8): 1870-1881.
[18]Satvat K, Gjomemo R, Venkatakrishnan V N. Extractor: Extracting attack behavior from threat reports[C]//2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2021: 598-615.
[19]Ge W, Wang J, Lin T, et al. Explainable cyber threat behavior identification based on self-adversarial topic generation[J]. Computers & Security, 2023, 132: 103369.
[20]Ge W, Cui Z, Wang J, et al. MetaCluster: A Universal Interpretable Classification Framework for Cybersecurity[J]. IEEE Transactions on Information Forensics and Security, 2024.
[21]Husari G, Al-Shaer E, Ahmed M, et al. Ttpdrill: Automatic and accurate extraction of threat actions from unstructured text of cti sources[C]//Proceedings of the 33rd annual computer security applications conference. 2017: 103-115.
[22]Niakanlahiji A, Wei J, Chu B T. A natural language processing based trend analysis of advanced persistent threat techniques[C]//2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018: 2995-3000.
[23]Fayyazi R, Yang S J. On the uses of large language models to interpret ambiguous cyberattack descriptions[J]. arXiv preprint arXiv:2306.14062, 2023.
[24]Mezzi E, Massacci F, Tuma K. Large Language Models are Unreliable for Cyber Threat Intelligence[J]. arXiv preprint arXiv:2503.23175, 2025.
[25]Rahman M R, Wroblewski B, Matthews Q, et al. ChronoCTI: Mining Knowledge Graph of Temporal Relations Among Cyberattack Actions[C]//2024 IEEE International Conference on Data Mining (ICDM). IEEE, 2024: 420-429.
[26]Hu Y, Zou F, Han J, et al. Llm-tikg: Threat intelligence knowledge graph construction utilizing large language model[J]. Computers & Security, 2024, 145: 103999.
[27]You Y, Jiang J, Jiang Z, et al. TIM: threat context-enhanced TTP intelligence mining on unstructured threat data[J]. Cybersecurity, 2022, 5(1): 3.
[28]Ge W, Wang J. SeqMask: Behavior extraction over cyber threat intelligence via multi-instance learning[J]. The Computer Journal, 2024, 67(1): 253-273.
[29]Liu C, Wang J, Chen X. Threat intelligence ATT&CK extraction based on the attention transformer hierarchical recurrent neural network[J]. Applied Soft Computing, 2022, 122: 108826.
[30]Wang L, Ma C, Feng X, et al. A survey on large language model based autonomous agents[J]. Frontiers of Computer Science, 2024, 18(6): 186345.
[31]Guo T, Chen X, Wang Y, et al. Large language model based multi-agents: A survey of progress and challenges[J]. arXiv preprint arXiv:2402.01680, 2024.
[32]Qu C, Dai S, Wei X, et al. Tool learning with large language models: A survey[J]. Frontiers of Computer Science, 2025, 19(8): 198343.
[33]Wei J, Zou K. Eda: Easy data augmentation techniques for boosting performance on text classification tasks[J]. arXiv preprint arXiv:1901.11196, 2019.
[34]Rahman M R, Williams L. From threat reports to continuous threat intelligence: a comparison of attack technique extraction methods from textual artifacts[J]. arXiv preprint arXiv:2210.02601, 2022.
[35]Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357.
[36]Liu J, Yan J, Jiang J, et al. TriCTI: an actionable cyber threat intelligence discovery system via trigger-enhanced neural network[J]. Cybersecurity, 2022, 5(1): 8.
[37]Wu X, Lv S, Zang L, et al. Conditional bert contextual augmentation[C]//Computational Science–ICCS 2019: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part IV 19. Springer International Publishing, 2019: 84-95.
[38]Aghaei E, Niu X, Shadid W, et al. Securebert: A domain-specific language model for cybersecurity[C]//International Conference on Security and Privacy in Communication Systems. Cham: Springer Nature Switzerland, 2022: 39-56.
[39]Brown T, Mann B, Ryder N, et al. Language models are few-shot learners advances in neural information processing systems 33[J]. 2020.
[40]Fang L, Lee G G, Zhai X. Using gpt-4 to augment unbalanced data for automatic scoring[J]. arXiv preprint arXiv:2310.18365, 2023.
[41]Fang Y, Li X, Thomas S W, et al. Chatgpt as data augmentation for compositional generalization: A case study in open intent detection[J]. arXiv preprint arXiv:2308.13517, 2023.
[42]Dai H, Liu Z, Liao W, et al. Auggpt: Leveraging chatgpt for text data augmentation[J]. IEEE Transactions on Big Data, 2025.
[43]于丰瑞,杜彦辉.网络威胁技战术情报识别提取生成式技术研究[J].计算机科学与探索,2025,19(01):118-131.
Fengrui Y, Yanhui D. Research on Generative Techniques for Identifying and Extracting Tactics, Tech niques and Procedures[J]. Journal of Frontiers of Computer Science & Technology, 2025, 19(01): 118-131.
[44]Facebook Research. fasttext: Library for efficient learning of word representations and sentence classifications[EB/OL]. [2025-06-10]. https://fasttext.cc/.
[45]于丰瑞.网络威胁技战术情报自动化识别提取研究综述[J].计算机工程与应用,2024,60(13):1-22.
Fengrui Y. Survey on Automated Recognition and Extraction of TTPs. Journal of Computer Engineering and Applicatin, 2024, 60(13): 1-22.
[46]Li M, Zheng R, Liu L, et al. Extraction of threat actions from threat-related articles using multi-label machine learning classification method[C]//2019 2nd International Conference on Safety Produce Informatization (IICSPI). IEEE, 2019: 428-431.
[47]Li Z, Zeng J, Chen Y, et al. AttacKG: Constructing technique knowledge graph from cyber threat intelligence reports[C]//European Symposium on Research in Computer Security. Cham: Springer International Publishing, 2022: 589-609.
[48]于忠坤,王俊峰,唐宾徽,等.基于注意力机制和特征融合的网络威胁情报技战术分类研究[J].四川大学学报(自然科学版),2022,59(05):96-103.DOI:10.19907/j.0490-6756.2022.053003.
Yu Z, Wang J F, Tang B H, et al. Research on the classification of cyber threat intelligence techniques and tactics based on attention mechanism and feature fusion [J]. J Sichuan Univ: Nat Sci Ed. 2022. 59: 053003.
[49]Abdeen B, Al-Shaer E, Singhal A, et al. Smet: Semantic mapping of cve to att&ck and its application to cybersecurity[C]//IFIP annual conference on data and applications security and privacy. Cham: Springer Nature Switzerland, 2023: 243-260.
[50]Kumarasinghe U, Lekssays A, Sencar H T, et al. Semantic ranking for automated adversarial technique annotation in security text[C]//Proceedings of the 19th ACM Asia Conference on Computer and Communications Security. 2024: 49-62.
[51]Rani N, Saha B, Maurya V, et al. TTPHunter: Automated extraction of actionable intelligence as TTPs from narrative threat reports[M]//Proceedings of the 2023 Australasian Computer Science Week. 2023: 126-134.
[52]Orbinato V, Barbaraci M, Natella R, et al. Automatic mapping of unstructured cyber threat intelligence: an experimental study:(practical experience report)[C]//2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2022: 181-192.
[53]Rani N, Saha B, Maurya V, et al. TTPXHunter: Actionable threat intelligence extraction as TTPs from finished cyber threat reports[J]. Digital Threats: Research and Practice, 2024, 5(4): 1-19.
[54]Liu X, Tan Y, Xiao Z, et al. Not the end of story: An evaluation of ChatGPT-driven vulnerability description mappings[C]//Findings of the Association for Computational Linguistics: ACL 2023. 2023: 3724-3731.
[55]Siracusano G, Sanvito D, Gonzalez R, et al. Time for action: Automated analysis of cyber threat intelligence in the wild[J]. arXiv preprint arXiv:2307.10214, 2023.
[56]Borgeaud S, Mensch A, Hoffmann J, et al. Improving language models by retrieving from trillions of tokens[C]//International conference on machine learning. PMLR, 2022: 2206-2240.
[57]Xu M, Wang H, Liu J, et al. IntelEX: A LLM-driven Attack-level Threat Intelligence Extraction Framework[J]. arXiv preprint arXiv:2412.10872, 2024.
[58]Guru K, Moss R J, Kochenderfer M J. On Technique Identification and Threat-Actor Attribution using LLMs and Embedding Models[J]. arXiv preprint arXiv:2505.11547, 2025.
[59]Zhang Y, Du T, Ma Y, et al. AttacKG+: Boosting attack graph construction with Large Language Models[J]. Computers & Security, 2025, 150: 104220.
[60]Zhang J, Wen H, Li L, et al. UniTTP: A Unified Framework for Tactics, Techniques, and Procedures Mapping in Cyber Threats[C]//2024 IEEE 23rd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE, 2024: 1580-1588.
[61]Hugging Face. Security-TTP-Mapping [EB/OL]. [2025-06-10]. https://huggingface.co/datasets/tumeteor/Security-TTP-Mapping/tree/main.
[62]Ji H, Yang J, Chai L, et al. Sevenllm: Benchmarking, eliciting, and enhancing abilities of large language models in cyber threat intelligence[J]. arXiv preprint arXiv:2405.03446, 2024.
|