[1]United Naations,Growing at a slower pace, world population is expected to re ach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100: UN Rep ort[EB/OL].2024-06-17https://population.un.org/wpp/Publications/
[2]曹炎,杨艳涛,王国刚.中国玉米自给率时空格局变化驱动因素及区域异质性分析[J].玉米科学, 2024, 32(7):118-126.
Cao Yan, Yang Yantao, Wang Guogang. Analysis of driving factors and regional heterogeneity of spatiotemporal changes in China's maize self-sufficiency rate [J]. Maize Science, 2024, 32(7): 118-126.
[3]张成鹏,涂圣伟,王恒,等.中国玉米产业发展现状、未来趋势及政策建议[J].中国经济报告,2025,(Z1):64-72.
Zhang Chengpeng, Tu Shengwei, Wang Heng, et al. Current status, future trends, and policy recommendations for China’s maize industry development [J]. China Economic Report, 2025, (Z1): 64-72.
[4] Ma Z, Wang W, Chen X, et al. Prediction of the global occurrence of maize diseases and estimation of yield loss under climate change[J]. Pest Management Science, 2024, 80(11): 5759-5770.
[5]Singla A ,Nehra A ,Joshi K , et al.Exploration of machine learning approaches for automated crop disease detection[J].Current Plant Biology,2024,40100382-100382.
[6]Chad D ,Tyr W ,Siyuan C , et al.Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.[J].Phytopathology,2017,107(11):1426-1432.
[7]Hassan S M, Jasinski M, Leonowicz Z, et al. Plant disease identification using shallow convolutional neural network[J]. Agronomy, 2021, 11(12): 2388.
[8]Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.v
[9]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[10]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[11]Amin H, Darwish A, Hassanien A E, et al. End-to-end deep learning model for corn leaf disease classification[J]. IEEE Access, 2022, 10: 31103-31115.
[12]Paul H, Udayangani H, Umesha K, et al. Maize leaf disease detection using convolutional neural network: a mobile application based on pre-trained VGG16 architecture[J]. New Zealand Journal of Crop and Horticultural Science, 2025, 53(2): 367-383.
[13] Subramanian M, Shanmugavadivel K, Nandhini P S. On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves[J]. Neural Computing and Applications, 2022, 34(16): 13951-13968.
[14] Rani R, Sahoo J, Bellamkonda S, et al. Attention-enhanced corn disease diagnosis using few-shot learning and VGG16[J]. MethodsX, 2025, 14: 103172.
[15] Lee H, Park Y S, Yang S, et al. A Deep Learning-Based Crop Disease Diagnosis Method Using Multimodal Mixup Augmentation[J]. Applied Sciences, 2024, 14(10): 4322.
[16] Cao Y, Chen L, Yuan Y, et al. Cucumber disease recgnition with small samples using image-text-label-based multi-modal language model[J]. Computers and electronics in agriculture, 2023, 211: 107993.
[17] Zhang N, Wu H, Zhu H, et al. Tomato disease classification and identification method based on multimodal fusion deep learning[J]. Agriculture, 2022, 12(12): 2014.
[18] Zhou H, Li W, Li P, et al. A novel few-shot learning framework based on diffusion models for high-accuracy sunflower disease detection and classification[J]. Plants, 2025, 14(3): 339.
[19] Rezaei M, Diepeveen D, Laga H, et al. Plant disease recognition in a low data scenario using few-shot learning[J]. Computers and electronics in agriculture, 2024, 219: 108812.
[20] Rani R, Sahoo J, Bellamkonda S. Corn Disease Detection Using Few-Shot Learning Prototypical Network[C]//2024 IEEE 16th International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2024: 1379-1383.
[21] Radford A, Kim J W, Hallacy C, et al. Learning tranferable visual models from natural language supervision[C]//International conference on machine learning. PmLR, 2021: 8748-8763.
[22] Zhang R, Zhang W, Fang R, et al. Tip-adapter: Training-free adaption of clip for few-shot classification[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2022: 493-510.
[23] He Y, Zhang G, Gao Q. A novel ensemble learning method for crop leaf disease recognition[J]. Frontiers in Plant Science, 2024, 14: 1280671.
[24] Ji Z, Bao S, Chen M, et al. ICS-ResNet: a lightweight network for maize leaf disease classification[J]. Agronomy, 2024, 14(7): 1587.
[25] 谢琬,崔艳荣.基于改进EfficientNet v2模型的玉米叶片病害识别[J].江苏农业科学, 2025,(9):1002-1302.
Xie Wan, Cui Yanrong. Maize leaf disease identification based on improved EfficientNet v2 model [J]. Jiangsu Agricultural Sciences, 2025, (9): 1002–1302.
[26] 张澳雪 崔艳荣 李素若 陈华锋 胡玉荣 胡蓉华.基于改进RegNet网络的玉米叶片病害识别研究[J].江苏农业科学, 2024(11).
Zhang Aoxue, Cui Yanrong, Li Suruo, Chen Huafeng, Hu Yurong, Hu Ronghua. Research on maize leaf disease identification based on improved RegNet network [J]. Jiangsu Agricultural Sciences, 2024, (11).
[27] HUGHES D P, SALATHÉ M. An open access repository of images on plant health to enable the detection of plant diseases [DS/OL]. arXiv,2015.https://doi.org https://doi.org/10.5281/zenodo.3780461
[28]王晓鸣, 王振营. 中国玉米病虫草害图鉴 [M]. 北京: 中国农业出版社, 2018.
Wang Xiaoming, Wang Zhenying. Illustrated Handbookof Maize Diseases, Insect Pests, and Weeds in China [M]. Beijing: China Agriculture Press, 2018.
[29] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arxiv preprint arxiv:2010.11929, 2020.
[30]Plant Village Dataset [DS/OL]. Kaggle, n.d. [2021-07-09]. https://www.kaggle.com/saroz014/plant-diseases
|