[1]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J].Advances in neural information processing systems,2017,30:5998-6008.
[2]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J].Advances in neural information processing systems,2012,25:1097-1105.
[3]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//International Conference on Learning Representations,2021:1-21.
[4]CARION N, MASSA F, SYNNAEVE G, et al. End-to- end object detection with transformers[C]//European conference on computer vision. Cham:Springer International Publishing,2020:213-229.
[5]ZHU Xizhou, SU Weijie, LU Lewei,et al. DeformableDETR: Deformable transformers for end-to-end objectdetection[C]//International Conference on LearningRepresentations.2021:1-16.
[6]MENG Depu, CHEN Xiaokang, FAN Zejia, et al.Conditional DETR for fast training convergence [C]//International Conference on Computer Vision.2021:3651-3660.
[7]ZHAO Yian, LV Wenyu, XU Shangliang, et al. Detrs beat yolos on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:16965-16974.
[8]CAO Shihai, WANG Ting, LI Tao, et al. UAV small target detection algorithm based on an improved YOLOv5s model[J].Journal of visual communication and image representation,2023,97(Dec.):1.1-1.9.DOI:10.1016/j.jvcir. 2023.103936.
[9]TANG Xiangyan, RUAN Chengchun, LI Xiulai, et al. MSC-YOLO:ImprovedYOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV- View[J].Computers, Materials and Continua, 2024, 79 (4):983-1003.DOI:10.32604/cmc.2024.047541.
[10]XU Wenyuan, CUI Chuang, JI Yongcheng, et al. YOLOv8-MPEB small target detection algorithm based on UAVimages[J].Heliyon,2024,10(8):18.DOI:10.1016/j.heliyon.2024.e29501,ISSN 2405-8440.
[11]HUI Yanming, WANG Jue, LI Bo. DSAA-YOLO: UAV remote sensing small target recognition algorithm for YOLOV7 based on dense residual super-resolution and anchor frame adaptive regression strategy[J].Journal of King Saud University-Computer and Information Sciences,2024,36(1).DOI:10.1016/j.jksuci.2023.101863.
[12]江志鹏,王自全,张永生,等.基于改进Deformable DETR的无人机视频流车辆目标检测算法[J].计算机工程与科学,2024,46(01):91-101.
JIANG Zhipeng, WANG Ziquan, ZHANG Yongsheng, et al. A vehicle object detection algorithm in UAV video stream based on improved Deformable DETR[J].Computer Engineering and Science,2024,46(01):91-101.
[13]王思宇,卢瑞涛,黄攀,等.基于Swin Transformer和注意力机制的红外无人机检测算法[J].航空科学技术,2024,35(02):39-46.DOI:10.19452/j.issn1007-5453.2024.02.005.
Wang Siyu, Lu Ruitao, Huang Pan, et al. Infrared UAV Detection Algorithm Based on Swin Transformer and Attention Mechanism[J].Aeronautical Science and Technology,2024,35(02):39-46.DOI:10.19452/j.issn1007-5453.2024.02.005.
[14]WANG Jinyu, JIN Lijun, LI Yingna, et al. Application of end-to-end perception framework based on boosted DETR in UAV inspection of overhead transmission lines [J]. Drones(2504-446X),2024,8(10).DOI:10.3390/drones8100545.
[15]ZHAO Li, WANG Jianlong, CHEN Yunhao, et al. IST-DETR:Improved DETR for Infrared Small Target Detection[J].IEEE Access,12[2025-08-01].DOI:10.1109/ ACCESS.2024.3491104.
[16]毛清华,郭文瑾,苏毅楠,等.改进RT-DETR的煤矿刮板输送机链条故障智能识别方法研究[J/OL].煤炭科学技术, 1-12[2025-03-28].http://kns.cnki.net/kcms/detail/11.2402. td.20241014.1415.004.html.
MAO Qinghua, GUO Wenjin, SU Yinan, et al. Research on intelligent identification of chain failure for mining scraper conveyor based on improved RT-DETR algorithm[J/OL].Coal Science and Technology, 1-12 [2025-03-28].http://kns.cnki.net/kcms/detail/11.2402.td.20241014.1415.004.html.
[17]TERVEN J, CÓRDOVA-ESPARZA D M, ROMERO -GONZÁLEZ J A. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas[J].Machine Learning and Knowledge Extraction,2023,5(4):1680-1716.DOI:10.3390/make5040083.
[18]WANG Zhaozhi, et al. vHeat:Building vision models upon heat conduction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2025:9707-9717.
[19]LI Yuxuan, et al. Large selective kernel network for remote sensing object detection.In: Proceedings of the IEEE/CVF international conference on computer vision. 2023. p. 16794-16805.
[20]SUNKARA,Raja;LUO,Tie.No more strided convolutions or pooling:A new CNN building block for low-resolution images and small objects. In: Joint European conference on machine learning and knowledge discovery in databases. Cham: Springer Nature Switzerland, 2022. p.443-459.
[21]HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.2021.p.13713-13722.
[22]ZHANG Hao, ZHANG Shuaijie. Focaler-iou:More focused intersection over union loss.arXiv preprint arXiv: 2401. 10525,2024.
[23]MA Siliang, XU Yong. Mpdiou:a loss for efficient and accurate bounding box regression. arXiv preprint arXiv:2307.07662,2023.v
[24]DU Dawei, ZHU Pengfei, WEN Longyin, et al. VisDrone -DET2019:The vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019:0-0.
[25]SUO Jiashun, WANG Tianyi, ZHANG Xingzhou, et al.HIT-UAV:A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection [J]. ScientificData,2023,10(1):227.
[26]XIA Guisong S, BAI Xiang, DING Jian, et al. DOTA:A large-scale dataset for object detection in aerial images [C]//Proceedings of the IEEE conference on computer vision and pattern recognition IEEE,2018: 3974 -39835
[27]CHEN Yifei, ZHANG Chenyan, CHEN Ben, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J].Computers in Biology and Medicine, 2024, 170.DOI:10.1016/j.compbiomed.2024.107917.
[28]YANG Zhiqiang, GUAN Qiu, ZHAO Keer, et al. Multi-Branch auxiliary fusion YOLO with re- parameterization heterogeneous convolutional for accurate object detection[J].arXiv:2407.04381,2024.
[29]TAN Mingxing, PANG Ruoming, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),USA,June 13-19.Piscataway, NJ:IEEE, 2020:1577–1586.
[30]ZHANG Hao, ZHANG Shuaijie. Shape-iou:More accurate metric considering bounding box shape and scale[J].arXiv preprint arXiv:2312.17663, 2023.
[31]ZHANG Hao, Xu Cong, Zhang Shuaijie. Inner-IoU:more effective intersection over union loss with auxiliary bounding box[J].arXiv preprint arXiv:2311.02877,2023.
[32]WANG Chien-Yao, YEH I-Hau, LIAO Hong-YuanMark. YOLOv9: Learning what you want to learn using programmable gradient information.Proceedings of the18th European Conference on Computer Vision. Milan: Springer, 2024. 1–21.
[33]Wang Ao, Chen Hui, Liu Lihao, et al. YOLOv10: Real-time end-to-end object detection[J]. arXiv preprint arXiv: 2405. 14458, 2024.
[34]李彬,李生林.改进 YOLOv11n 的无人机小目标检测算法[J].计算机工程与应用, 2025, 61(7): 96-104.
LI Bin, LI ShengLin. Improved YOLOv11n small object detection algorithm in UAV View[J]. Computer Engineeringand Applications,2025,61(7):96-104.
[35]TIAN Yunjie, YE Qixiang X, DAVID DOERMANN. YOLOv12:Attention-centric real-time object detectors[J]. arXiv preprint arXiv:2502.12524,2025.
|