[1]BRAJNIK G, GABRIELLI S. A review of online advertising effects on the user experience[J]. International Jounal of Human-Computer Interaction, 2010, 26(10): 971-997.
[2]ESTRADAS-JIMéNEZ J, PARRA-ARNAU J, RODRIGUEZ-HOYOS A, et al. Online advertising: Analysis of privacy threats and protection approaches[J]. Computer Communications, 2017, 100: 32-51.
[3]REN K, QIN J, FANG Y, et al. Lifelong sequential modeling with personalized memorization for user response prediction[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019: 565-574.
[4]CAO Y, ZHOU X, FENG J, et al. Sampling is all you need on modeling long-term user behaviors for CTR prediction[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 2022: 2974-2983.
[5]PI Q, BIAN W, ZHOU G, et al. Practice on long sequential user behavior modeling for click-through rate prediction[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 2671-2679.
[6] PI Q, ZHOU G, ZHANG Y, et al. Search-based user interest modeling with lifelong sequential behavior data for click-through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 2685-2692.
[7] QIN J, ZHANG W, WU X, et al. User behavior retrieval for click-through rate prediction[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 2347-2356.
[8] CHANG J, ZHANG C, FU Z, et al. TWIN: Two-stage interest network for lifelong user behavior modeling in CTR prediction at kuaishou[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023: 3785-3794.
[9] SI Z, GUAN L, SUN Z X, et al. TWIN V2: Scaling ultra-long user behavior sequence modeling for enhanced ctr prediction at kuaishou[C]//Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. 2024: 4890-4897.
[10] CHEN Q, PEI C, LV S, et al. End-to-end user behavior retrieval in click-through rate prediction model[EB/OL]. [2021-08-10]. https://arxiv.org/abs/2108.04468.
[11] ZHANG Y, CHEN E, JIN B, et al. Clustering based behavior sampling with long sequential data for CTR prediction[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022: 2195-2200.
[12] XU X, WANG H, GUO W, et al. Multi-granularity interest retrieval and refinement network for long-term user behavior modeling in ctr prediction[C]//Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1. 2025: 2745-2755.
[13] LI H, WANG X, ZHANG Z, et al. Intention-aware sequential recommendation with structured intent transition[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5403-5414.
[14] KURASHIMA T, ALTHOFF T, LESKOVEC J. Modeling interdependent and periodic real-world action sequences[C]//Proceedings of the 2018 World Wide Web Conference. 2018: 803-812.
[15] XU Y, ZHU L, LI J, et al. Temporal Social Graph Network Hashing for Efficient Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3541-3555.
[16] HE X, PAN J, JIN O, et al. Practical lessons from predicting clicks on ads at facebook[C]//Proceedings of the Eighth International Workshop on Data Mining for Online Advertising. 2014: 1-9.
[17] RENDLE S. Factorization machines[C]//2010 IEEE International Conference on Data Mining. IEEE, 2010: 995-1000.
[18] JUAN Y, ZHUANG Y, CHIN W S, et al. Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems. 2016: 43-50.
[19] COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for youtube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. 2016: 191-198.
[20] QU Y, CAI H, REN K, et al. Product-based neural networks for user response prediction[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016: 1149-1154.
[21] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. 2016: 7-10.
[22] ZHOU G, ZHU X, SONG C, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM [6] PI Q, ZHOU G, ZHANG Y, et al. Search-based user interest modeling with lifelong sequential behavior data for click-through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 2685-2692.
[23] ZHOU G, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 5941-5948.
[24] LIAN J, ZHOU X, ZHANG F, et al. xDeepFm: Combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 1754-1763.
[25] XIAO J, YE H, HE X, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[EB/OL]. [2017-08-15]. https://arxiv.org/abs/1708.04617.
[26] 张玉洁,董政,孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44 (03): 531-563.
ZHANG Y, DONG Z, MENG X. Research on Personalized Advertising Recommendation Systems and Their Applications[J]. Chinese Journal of Computers, 2021, 44(03):531-563.
[27] 黄震华,林小龙,孙圣力,等. 会话场景下基于特征增强的图神经推荐方法[J]. 计算机学报, 2022, 45 (04): 766-780.
HUANG Z, LIN X, SUN S, et al. Feature augmentation based graph neural recommendation method in session scenarios[J]. Chinese Journal of Computers, 2022, 45(04):766-780.
[28] HU H, HE X, GAO J, et al. Modeling personalized item frequency information for next-basket recommendation[C]//Proceedings of the 43rd international ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 1071-1080.
[29] ARIANNEZHAD M, JULLIEN S, LI M, et al. ReCANet: A repeat consumption-aware neural network for next basket recommendation in grocery shopping[C]//Proceedings of the 45th international ACM SIGIR Conference on Research and Development in Information Retrieval. 2022: 1240-1250.
[30] 杜永萍,牛晋宇,王陆霖,等. 基于时间卷积注意力神经网络的序列推荐模型[J]. 模式识别与人工智能, 2022, 35 (05): 472-480.
DU Y, NIU J, WANG L, et al. Sequential recommendation model based on temporal convolution attention neural network[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(05):472-480.
[31] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2018-03-04]. https://arxiv.org/abs/1803.01271.
[32] ZHOU H, ZHANG S, PENG J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(12): 11106-11115.
|