[1]F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini, "The Graph Neural Network Model"[J]. In IEEE Transactions on Neural Networks,2009,20(1): 61-80.
[2]阳雨,胡亚洲,郭勇,等.基于在线社交网络的用户信任传递建模与分析[J].计算机工程,2018,44(11):265-270.
Yang Yu, Hu Yazhou, Guo Yong, et al. Modeling and Analysis of User Trust Transfer Based on Online Social Networks [J]. Computer Engineering,2018,44(11):265-270.
[3] Zheng, F., Lu, J., Zhu, Z., Jiang, H., Yan, Y., He, Y., Yuan, S., & Sun, Q. Predicting Molecular Self-Assembly on Metal Surfaces Using Graph Neural Networks Based on Experimental Data Sets[J]. ACS Nano, 2023,17(17): 17545-17553.
[4]荣斌,武志昊,刘晓辉,等.基于时空多图卷积网络的交通站点流量预测[J].计算机工程,2020,46(05):26-33.
Rong Bin, Wu Zhihao, Liu Xiaohui, et al. Traffic Station Flow Prediction Based on Spatio-temporal Multi-graph Convolutional Network [J]. Computer Engineering,2020,46(05):26-33.
[5] Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. Hypergraph Neural Networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Accepted in AAAI', 2019: 3558-3565.
[6]何杏宇,周易歆,罗东旭,等.基于图神经网络和多主体评价的教学资源推荐[J].计算机工程,2024,50(07):13-22.
He Xingyu, Zhou Yixin, Luo Dongxu, et al. Teaching resource Recommendation Based on Graph Neural Network and Multi-agent Evaluation [J]. Computer Engineering,2024,50(07):13-22.
[7] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. Neural Collaborative Filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia : International World Wide Web Conferences Steering Committee , 2017: 173–182.
[8] Wang, Guang and Li, Danni and Sun, Yue. Graph attention neural network social recommendation based on dynamic representation[C]//Proceedings of the 2023 11th International Conference on Information Technology: IoT and Smart City. New York, NY, USA: Association for Computing Machinery, 2024: 83–88.
[9] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 32 (1): 4–24.
[10] Zaremba, W., Sutskever, I., Vinyals, O, Recurrent neural network regularization[J]. Neural and Evolutionary Computing, 2014.
[11] Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview and application in radiology[J]. Insights Imaging 2018, 9(4): 611–629.
[12] Li Y, Chen J, Chen C, et al. Contrastive Deep Nonnegative Matrix Factorization for Community Detection[J]. ICASSPIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2023, 6725-6729.
[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for social recommendation[C]//In Proceedings ofthe World WideWeb Conference. San Francisco, CA, USA: Association for Computing Machinery, 2019: 417–426.
[14] Siwei Liu, Iadh Ounis, Craig Macdonald, and Zaiqiao Meng. A heterogeneous graph neural model for cold-start recommendation[C]//In Proceedings ofthe 43rd International ACMSIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA : Association for Computing Machinery, 2020: 2029–2032.
[15] Changhao Song, Bo Wang, Qinxue Jiang, Yehua Zhang, Ruifang He, and Yuexian Hou. 2021. Social recommendation with implicit social influence. In Proceedings ofthe 44th International ACMSIGIR Conference on Research and Development in Information Retrieval. 1788–1792.
[16] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. Diffnet++: A neural influence and interest diffusion network for social recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4753 – 4766.
[17] Jiajun Bu, Shulong Tan, Chun Chen, Can Wang, Hao Wu, Lijun Zhang, and Xiaofei He. Music recommendation by unified hypergraph: combining social media information and music content[C]//In Proceedings ofthe 18th ACM International Conference on Multimedia. New York, NY, USA : Association for Computing Machinery , 2010: 391–400.
[18] Yang Xiao, Lina Yao, Qingqi Pei, XianzhiWang, Jian Yang, and Quan Z. Sheng. MGNN: Mutualistic graph neural network for joint friend and item recommendation[J]. IEEE Intell. Syst,2020, 35(5): 7–17.
[19] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, PaulWeng, HanGao, and Guihai Chen. Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems[C]//In Proceedings of the International World Wide Web Conference. New York, NY, USA : Association for Computing Machinery , 2019: 2091–2102.
[20] Wang, X., He, X., Wang, M., Feng, F., & Chua, T.. Neural Graph Collaborative Filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA: Association for Computing Machinery, 2019:165-174.
[21] He, Xiangnan et al. “LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation.” [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: Association for Computing Machinery, 2020: 639-648.
[22] Song Bai, Feihu Zhang, Philip H.S. Torr.Hypergraph convolution and hypergraph attention[J].Pattern Recognition,2021,110(107637): 0031-3203.
[23] Neil Hurley and Mi Zhang. Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation[J]. ACM Trans. Internet Technol.Conference on World Wide Web. Perth, Australia : International World Wide Web Conferences Steering Committee , 2017: 173–182.
[24] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. HOP-rec: high-order proximity for implicit recommendation[C]//In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys '18). New York, NY, USA: Association for Computing Machinery, 2018: 140–144.
[25]Yan, X., Song, T., Jiao, Y., He, J., Wang, J., Li, R., & Chu, W. Spatio Temporal Hypergraph Learning for Next POI Recommendation[C].//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval , Taipei, Taiwan ,2023: 403–412.
[26] C. Chen, Z. Cheng, Z. Li and M. Wang, "Hypergraph Attention Networks,"[C]//IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 2020:1560-1565.
[27] Xia, L., Huang, C., Xu, Y., Zhao, J., Yin, D., & Huang, J. Hypergraph Contrastive Collaborative Filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid, Spain : Association for Computing Machinery , 2022: 70–79.
[28] Xia, X., Yin, H., Yu, J., Wang, Q., Cui, L., & Zhang, X. Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence , Palo Alto, California USA : AAAI Press , 2021: 4503-4511
[29] Zhe Y, Liangkui X and Lei Z. EFBH: Collaborative Filtering Model Based on Multi-Hypergraph Encoder[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 2939-2948.
[30] Wu C, Liu S, Zeng Z, et al. Knowledge graph-based multi-context-aware recommendation algorithm[J]. Information Sciences, 2022, 595: 179-194.
[31] Cai, H., Zheng, V.W., & Chang, K.C. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,30(9): 1616-1637.
[32] Wang, X., He, X., Cao, Y., Liu, M., & Chua, T. KGAT: Knowledge Graph Attention Network for Recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, AK, USA: Association for Computing Machinery, 2019: 950–958.
[33] Wang, X., Jin, H., Zhang, A., He, X., Xu, T., & Chua, T. Disentangled Graph Collaborative Filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event, China: Association for Computing Machinery, 2020: 1001–1010.
[34] Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. Efficient Estimation of Word Representations in Vector Space[C]// International Conference on Learning Representations,2013: arXiv preprint arXiv:1301.3781
[35] L. Wang, E.K. Egorova, and A.V. Mokryakov. Development of hypergraph theory[J]. Journal of Computer and Systems Sciences International, 2018, 57(1): 109–114.
[36] Velickovic, Petar et al. “Graph Attention Networks.”[C]// International Conference on Learning Representations. arXiv, 2017: abs/1710.10903
[37] H. Khatter, N. Goel, N. Gupta and M. Gulati, "Movie Recommendation System using Cosine Similarity with Sentiment Analysis,"[C]//2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India: IEEE, 2021: 597-603,
[38] Sujoy Bag, Sri Krishna Kumar, Manoj Kumar Tiwari, An efficient recommendation generation using relevant Jaccard similarity[J].Information Sciences, 2019,483: 0020-0255.
[39] Kipf, Thomas and Max Welling. “Semi-Supervised Classification with Graph Convolutional Networks.”[C]//Proceedings of the 5th International Conference on Learning Representations. Palais des Congrès Neptune, Toulon, France: ArXiv, 2016: abs/1609.02907.
[40] Lai, Y., Su, Y., Wei, L., Wang, T., Zha, D., & Wang, X. Adaptive Spatial Temporal Hypergraph Fusion Learning for Next POI Recommendation.[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ,2024: 7320-7324.
[41] Jiang, Lu and Xiao, Yanan and Zhao, Xinxin and Xu, Yuanbo and Hu, Shuli and Wang, Pengyang and Yin, Minghao.[C]// Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, Jeju, Korea,2024: 2099-2107.
[42] Zheng, Y., Xu, R., Chen, Z., Wang, G., Qian, M., Qin, J., & Lin, L. HyCoRec: Hypergraph-Enhanced Multi-Preference Learning for Alleviating Matthew Effect in Conversational Recommendation[C]// Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand: Association for Computational Linguistics, 2024: 2526–2537.
[43]中国直升机设计研究所.一种保障资源相似性识别计算方法:202010370021.8[P].2020-09-04.
China Helicopter Design and Research Institute. A calculation method for identifying the similarity of guaranteed resources:202010370021.8[P].2020-09-04.
|