[1] Cour T, Sapp B, Taskar B. Learning from Partial Labels[J]. Journal of Machine Learning Research, 2011, 12: 1501-1536.
[2] Lee J, Kim Y, Kim S B. Noise-robust graph-based semi-supervised learning with dynamic shaving label propagation[J]. Applied Soft Computing, 2023, 142: 110371.
[3] Li Y F, Guo L Z, Zhou Z H. Towards Safe Weakly Supervised Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 334-346.
[4] Tian Y J, Yu X T, Fu S J. Partial label learning: Taxonomy, analysis and outlook[J]. Neural Networks Neural Networks, 2023, 161: 708-734.
[5] 胡声丹, 苗夺谦, 姚一豫. 基于三支标签传播的半监督属性约简[J]. 计算机学报, 2021, 44(11): 2332-2343.
HU S D, MIAO D Q, YAO Y Y. Semi-supervised attribute reduction based on three-way label propagation[J]. Chinese Journal of Computers, 2021, 44(11): 2332-2343.
[6] 魏晓宁, 朱巧明. 基于Nave Bayes模型的垃圾邮件过滤方法[J]. 南通大学学报(自然科学版), 2008, No.24(01): 54-57.
WEI X N, ZHU Q M. Spam filtering method based on Nave Bayes model[J]. Journal of Nantong University (Natural Science Edition), 2008, 24(1): 54-57.
[7] Zhang Z, Yao J L, Liu L, et al. Partial Label Feature Selection: An Adaptive Approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(8): 4178-4191.
[8] Wu J-H, Zhang M-L. Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 416–424.
[9] Bao W-X, Hang J-Y, Zhang M-L. Submodular Feature Selection for Partial Label Learning[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 26–34.
[10] Bao W-X, Hang J-Y, Zhang M-L. Partial Label Dimensionality Reduction via Confidence-Based Dependence Maximization[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 46–54.
[11] Qian W B, Li Y H, Ye Q Z, et al. Disambiguation-based partial label feature selection via feature dependency and label consistency[J]. Information Fusion, 2023, 94: 152-168.
[12] 樊晓雪, 杨光, 鞠恒荣,等. 面向多视角证据信息融合的高效特征选择方法[J]. 昆明理工大学学报(自然科学版), 2025, 50(1): 72-84,157.
FAN X X, YANG G, JU H R, et al. Efficient feature selection method for multi-view evidence information fusion[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2025, 50(1): 72-84,157. (in Chinese)
[13] 张铃, 张钹. 模糊商空间理论(模糊粒度计算方法)[J]. 软件学报, 2003, 14(4): 770-776.
ZHANG L, ZHANG B. Fuzzy quotient space theory (fuzzy granular computing method)[J]. Journal of Software, 2003, 14(4): 770-776. (in Chinese)
[14] Pawlak Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341-356.
[15] Gong C, Liu T L, Tang Y Y, et al. A Regularization Approach for Instance-Based Superset Label Learning[J]. IEEE Transactions on Cybernetics, 2018, 48(3): 967-978.
[16] Czelakowski J. AC is Equivalent to the Coherence Principle. Corrigendum to my Paper "Induction Principles for Sets"[J]. Fundamenta Informaticae, 2009, 93(4): 353-356.
[17] 周天奕, 丁卫平, 黄嘉爽,等. 模糊逻辑引导的多粒度深度神经网络[J]. 模式识别与人工智能, 2023, 36(9): 778-792.
ZHOU T Y, DING W P, HUANG J S, et al. Fuzzy logic guided multi-granularity deep neural network[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(9): 778-792. (in Chinese)
[18] 王静, 丁卫平, 尹涛, 等. 基于多模态模糊特征融合的脑龄协同预测算法[J]. 模式识别与人工智能, 2024, 37(7): 613-625.
WANG J, DING W P, YIN T, et al. Collaborative brain age prediction algorithm based on multi-modal fuzzy feature fusion[J]. Pattern Recognition and Artificial Intelligence, 2024, 37(7): 613-625. (in Chinese)
[19] 王国胤, 傅顺, 杨洁, 等. 基于多粒度认知的智能计算研究[J]. 计算机学报, 2022, 45(6): 1161-1175.
WANG G Y, FU S, YANG J, et al. Research on intelligent computing based on multi-granular cognitive[J]. Chinese Journal of Computers, 2022, 45(6): 1161-1175. (in Chinese)
[20] Huang Z H, Li J J. Multi-level granularity entropies for fuzzy coverings and feature subset selection[J]. Artificial Intelligence Review, 2023, 56(10): 12171-12200.
[21] Campagner A, Ciucci D, Hüllermeier E. Rough set-based feature selection for weakly labeled data[J]. International Journal of Approximate Reasoning, 2021, 136: 150-167.
[22] Xu J C, Zhou C S, Xu S H, et al. Feature selection based on multi-perspective entropy of mixing uncertainty measure in variable-granularity rough set[J]. Applied Intelligence, 2024, 54(1): 147-168.
[23] 欧阳宵, 陶红, 范瑞东, 等. 利用标签相关性先验的弱监督多标签学习方法[J]. 软件学报, 2023, 34(4): 1732-1748.
OUYANG X, TAO H, FAN R D, et al. Weakly supervised multi-label learning method using label correlation prior[J]. Journal of Software, 2023, 34(4): 1732-1748. (in Chinese)
[24] Hüllermeier E, Beringer J. Learning from ambiguously labeled examples[J]. Intelligent Data Analysis, 2006, 10(5): 419-439.
[25] Sun K, Min Z, Wang J. PP-PLL: Probability Propagation for Partial Label Learning [C]//Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2020: 123–137.
[26] Zhou Y, He J J, Gu H. Partial Label Learning via Gaussian Processes[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4443-4450.
[27] Jin R, Ghahramani Z. Learning with multiple labels [C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2002: 921–928.
[28] Liu B, Zheng Z, Xiao Y, et al. Self-paced method for [1] Cour T, Sapp B, Taskar B. Learning from Partial Labels[J]. Journal of Machine Learning Research, 2011, 12: 1501-1536.
[29] Wang D B, Zhang M L, Li L. Adaptive Graph Guided Disambiguation for Partial Label Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8796-8811.
[30] Hongchang C, Tian X I E, Chao G a O, et al. Candidate Label-Aware Partial Label Learning Algorithm[J]. Journal of Electronics & Information Technology, 2018, 41(10): 2516-2524.
[31] Xia S, Lv J, Xu N, et al. Ambiguity-Induced Contrastive Learning for Instance-Dependent Partial Label Learning [C]// Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Vienna: IJCAI Organization, 2022: 3615–3621
[32] Tang W, Zhang W J, Zhang M-L. Disambiguated Attention Embedding for Multi-Instance Partial-Label Learning[C]//Proceedings of the 37th Conference on Neural Information Processing Systems. New Orleans, LA, USA: Curran Associates, Inc., 2023.
[33] Liu J, Wang B, Qi Z, et al. Learning from Label Proportions with Generative Adversarial Networks [C]//Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver: Curran Associates, 2019: 7169–7179.
[34] Tolstikhin I, Houlsby N, Kolesnikov A, et al. MLP-Mixer: An all-MLP Architecture for Vision[C]//Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). 2021: 24261-24272.
[35] Ahmad U, Batool T. Domination in rough fuzzy digraphs with application[J]. Soft Computing, 2023, 27(5): 2425-2442.
[36] 钟海博. 基于模糊互信息的多标签特征选择的研究[D]. 长春:吉林大学, 2022.
ZHONG H B. Research on multi-label feature selection based on fuzzy mutual information[D]. Changchun: Jilin University, 2022. (in Chinese)
[37] Dai J, Liu Q, Zou X, et al. Feature selection based on fuzzy combination entropy considering global and local feature correlation[J]. Information Sciences, 2024, 652.
[38] Zhang M-L, Yu F. Solving the partial label learning problem: an instance-based approach [C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Buenos Aires: AAAI Press, 2015: 4048–4054.
[39] Wang W, Zhang M-L. Partial Label Learning with Discrimination Augmentation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington, DC: ACM, 2022: 1920–1928.
[40] Zhang M-L, Zhou B-B, Liu X-Y. Partial Label Learning via Feature-Aware Disambiguation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 1335–1344.
[41] Qian D, Liu K, Zhang S, et al. Semi-supervised feature selection by minimum neighborhood redundancy and maximum neighborhood relevancy[J]. Applied Intelligence, 2024, 54(17-18): 7750-7764.
[42] Yin T Y, Chen H M, Yuan Z, et al. A Robust Multilabel Feature Selection Approach Based on Graph Structure Considering Fuzzy Dependency and Feature Interaction[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(12): 4516-4528.
[43] Zhang M-L, Wu J-H, Bao W-X. Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction[J]. Acm Transactions on Knowledge Discovery from Data, 2022, 16(4).
[44] Qian W, Dong P, Dai S, et al. Incomplete label distribution feature selection based on neighborhood-tolerance discrimination index[J]. Applied Soft Computing, 2022, 130: 109693.
[45] Chen T, Kornblith S, Norouzi M, et al. A Simple Framework for Contrastive Learning of Visual Representations[C]//Proceedings of the 37th International Conference on Machine Learning (ICML). PMLR, 2020: 1597-1607.
|