[1]张雪莹,张浩林,韩莹莹,等.基于深度学习的野生动物监测与识别研究进展[J].野生动物学报,2022,43(01):251-258.
Xueying Zhang, Haolin Zhang, Yingying Han, et al. Progress in Research on Wildlife Monitoring and Recognition Based on Deep Learning [J]. Journal of Wildlife, 2022, 43(01): 251–258.
[2]杨筱,胡继平,任开磊,等.野生动物及其栖息地生态现状调查方法评估优化研究[J].林业资源管理,2023,(03):65-70.
Xiao Yang, Jiping Hu, Kailei Ren, et al. Research on Evaluation and Optimization of Survey Methods for the Ecological Status of Wildlife and Their Habitats [J]. Forest Resources Management, 2023, (03): 65–70.
[3]王翰霖,文帅,白俊,等.红外相机监测目标物种的一种自动化检测方法:以绿尾虹雉为例[J].四川动物,2022,41(04):361-369.
Hanlin Wang, Shuai Wen, Jun Bai, et al. An Automated Detection Method for Infrared Camera Monitoring of Target Species: A Case Study of the Chinese Monal [J]. Sichuan Journal of Zoology, 2022, 41(04): 361–369.
[4]陈海燕,甄霞军,赵涛涛.一种自适应图像融合数据增强的高原鼠兔目标检测方法[J].农业工程学报,2022,38(S1):170-175.
Haiyan Chen, Xiajun Zhen, Taotao Zhao. A Plateau Pika Target Detection Method Based on Adaptive Image Fusion Data Augmentation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(S1): 170–175.
[5]柯澳,王宇聪,胡博宇,等.基于图像的野生动物检测与识别综述[J].计算机系统应用,2024,33(01):22-36.
Ao Ke, Yucong Wang, Boyu Hu, et al. A Review of Image-Based Wildlife Detection and Recognition [J]. Computer Systems & Applications, 2024, 33(01): 22–36.
[6]Delplanque A, Foucher S, Lejeune P, et al. Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks[J]. Remote Sensing in Ecology and Conservation, 2022, 8(2): 166-179.
[7]Putting eagle rays on the map by coupling aerial video-surveys and deep learning
[8]戴天虹,刘超.基于改进EfficientDet的雪豹红外相机图像检测方法[J].哈尔滨理工大学学报,2023,28(02):108-116.
Tianhong Dai, Chao Liu. Snow Leopard Detection in Infrared Camera Images Based on Improved EfficientDet [J]. Journal of Harbin University of Science and Technology, 2023, 28(02): 108–116.
[9]Guo Y, Rothfus T A, Ashour A S, et al. Varied channels region proposal and classification network for wildlife image classification under complex environment[J]. IET Image Processing, 2020, 14(4): 585-591.
[10]Chen P, Swarup P, Matkowski W M, et al. A study on giant panda recognition based on images of a large proportion of captive pandas[J]. Ecology and Evolution, 2020, 10(7): 3561-3573.
[11]Tan M, Chao W, Cheng J K, et al. Animal detection and classification from camera trap images using different mainstream object detection architectures[J]. Animals, 2022, 12(15): 1976.
[12]Vecvanags A, Aktas K, Pavlovs I, et al. Ungulate detection and species classification from camera trap images using RetinaNet and faster R-CNN[J]. Entropy, 2022, 24(3): 353.
[13]Roy A M, Bhaduri J, Kumar T, et al. WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection[J]. Ecological Informatics, 2023, 75: 101919.
[14]Yildiz E, Yuksel M E, Sevgen S. A Single-Image GAN Model Using Self-Attention Mechanism and DenseNets[J]. Neurocomputing, 2024: 127873.
[15]杨文翰,刘天宇,周俊池,等.基于改进YOLOv5s的CNN-Swin Transformer森林野生动物图像目标检测算法[J].林业科学,2024,60(03):121-130.
Wenhan Yang, Tianyu Liu, Junchi Zhou, et al. A Forest Wildlife Image Object Detection Algorithm Based on Improved YOLOv5s and CNN-Swin Transformer [J]. Scientia Silvae Sinicae, 2024, 60(03): 121–130.
[16]艾尔肯•亥木都拉,侯艳林.基于YOLOv5s-ESTC的肉苁蓉检测[J].农业工程学报,2024,40(06):267-276.
Aierken Haimudoula, Yanlin Hou. Detection of Cistanche deserticola Based on YOLOv5s-ESTC [J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(06): 267–276.
[17]潘时佳,吴津乐,程梅,等.基于改进CNN的猕猴桃根区土壤含水率反演方法[J].农业工程学报,2024,40(11):85-91.
Shijia Pan, Jinle Wu, Mei Cheng, et al. An Improved CNN-Based Inversion Method for Soil Water Content in the Root Zone of Kiwifruit [J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(11): 85–91.
[18]Schindler F, Steinhage V. Identification of animals and recognition of their actions in wildlife videos sing deep learning techniques[J]. Ecological Informatics, 2021, 61: 101215.
[19]陈永,安卓奥博,张娇娇.基于旋转自注意力改进Mask RCNN的桥梁裂缝检测方法[J/OL].吉林大学学报(工学版),1-13[2024-07-11].
Yong Chen, Zhuo’ao An, Jiaojiao Zhang. Bridge Crack Detection Method Based on Improved Mask RCNN with Rotated Self-Attention [J/OL]. Journal of Jilin University (Engineering and Technology Edition), 1–13 [2024-07-11].
[20]史春妹,谢佳君,顾佳音,等.基于目标检测的东北虎个体自动识别[J].生态学报,2021,41(12):4685-4693.
Chunmei Shi, Jiajun Xie, Jiayin Gu, et al. Automatic Individual Identification of Siberian Tigers Based on Object Detection [J]. Acta Ecologica Sinica, 2021, 41(12): 4685–4693.
[21]Hussain M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677.
[22]Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[23]Liu D, Hou J, Huang S, et al. LoTE-Animal: A long time-span dataset for endangered animal behavior understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 20064-20075.
[24]杨铭伦,张旭,郭颖,等.基于YOLOv5的红外相机野生动物图像识别[J].激光与光电子学进展,2022,59(12):382-390.
Minglun Yang, Xu Zhang, Ying Guo, et al. Wildlife Image Recognition in Infrared Camera Based on YOLOv5 [J]. Laser & Optoelectronics Progress, 2022, 59(12): 382–390.
[25]王美华,王安邦,肖德琴,等.改进YOLOv5s对病理学图像中猪只小肠绒毛的检测[J].农业工程学报,2024,40(05):207-215.
Meihua Wang, Anbang Wang, Deqin Xiao, et al. Detection of Pig Small Intestinal Villi in Pathological Images Using Improved YOLOv5s [J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(05): 207–215.
[26]肖治术,肖文宏,王天明,等.中国野生动物红外相机监测与研究:现状及未来[J].生物多样性,2022,30(10):234-259.
Zhishu Xiao, Wenhong Xiao, Tianming Wang, et al. Infrared Camera Monitoring and Research on Wildlife in China: Current Status and Future Perspectives [J]. Biodiversity Science, 2022, 30(10): 234–259.
[27]Qi Y, He Y, Qi X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 6070-6079.
[28]Liu Y, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel-spatial interactions. arxiv 2021[J]. arxiv preprint arxiv:2112.05561, 2021.
[29]Siliang M, Yong X. MPDIoU: A loss for efficient and accurate bounding box regression[J]. arxiv preprint arxiv:2307.07662, 2023.
[30]张振国,邢振宇,赵敏义,等.改进YOLOv3的复杂环境下红花丝检测方法[J].农业工程学报,2023,39(03):162-170.
Zhenguo Zhang, Zhenyu Xing, Minyi Zhao, et al. Improved YOLOv3-Based Detection Method for Safflower Filaments in Complex Environments [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(03): 162–170.
[31]束美艳,李世林,魏家玺,等.基于无人机平台的柑橘树冠信息提取[J].农业工程学报,2021,37(01):68-76.
Meiyan Shu, Shilin Li, Jiaxi Wei, et al. Extraction of Citrus Canopy Information Based on UAV Platform [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(01): 68–76.
[32]李章维,胡安顺,王晓飞.基于视觉的目标检测方法综述[J].计算机工程与应用,2020,56(08):1-9.
Zhangwei Li, Anshun Hu, Xiaofei Wang. A Survey of Visual-Based Object Detection Methods. Computer Engineering and Applications, 2020, 56(08): 1–9.
|