[1] Du M, Li F, Zheng G, et al. Deeplog: Anomaly detection and diagnosis from system logs through deep learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 1285-1298.
[2] Le V H, Zhang H. Log-based anomaly detection without log parsing[C]//2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2021: 492-504.
[3] Meng W, Liu Y, Zhu Y, et al. Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs[C]//IJCAI. 2019, 19(7): 4739-4745.
[4] Gong K, Luo S, Pan L, et al. LogETA: Time-aware cross-system log-based anomaly detection with inter-class boundary optimization[J]. Future Generation Computer Systems, 2024, 157: 16-28.
[5] 尹春勇,张小虎.基于Transformer和Text-CNN的日志异常检测[J].计算机工程与科学,2025,47(03):448-458.
YIN C, ZHANG X. Log anomaly detection based on Transformer and Text-CNN[J]. Computer Engineering & Science, 2025, 47(03): 448-458.
[6] Wu X, Li H, Khomh F. What information contributes to log-based anomaly detection? Insights from a configurable transformer-based approach[J]. Automated Software Engineering, 2025, 32(2): 58.
[7] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 2019: 4171-4186.
[8] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2980-2988.
[9] Wittkopp T, Wiesner P, Scheinert D, et al. Loglab: attention-based labeling of log data anomalies via weak supervision[C]//International Conference on Service Oriented Computing. Cham: Springer International Publishing, 2021: 700-707.
[10] 余佳妮,胡朝霞,蒋从锋.一种基于多特征的日志事件异常检测方法研究[J].计算机工程与科学,2024,46(09):1587-1597.
Yu, J., Hu, Z., & Jiang, C. Research on a log event anomaly detection method based on multi-features[J]. Computer Engineering and Science, 2024,46(09), 1587-1597.
[11] Huang S, Liu Y, Fung C, et al. Hitanomaly: Hierarchical transformers for anomaly detection in system log[J]. IEEE Transactions on Network and Service Management, 2020, 17(4): 2064-2076.
[12] LIU Y, REN S, WANG X, et al. Temporal logical attention network for log-based anomaly detection in distributed systems[J]. Sensors (Basel, Switzerland), 2024, 24(24): 7949.
[13] Xie Y, Zhang H, Babar M A. LogGD: Detecting Anomalies from System Logs with Graph Neural Net-works[C]//2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). IEEE, 2022: 299-310.
[14] 陈旭,张硕,景永俊,等.混合特征平衡图注意力网络日志异常检测模型[J].计算机工程与应用,2025,61(01):308-320.
Chen, X., Zhang, S., Jing, Y., et al. A hybrid-feature balanced graph attention network for log anomaly detection[J]. Computer Engineering and Applications, 2025,61(01), 308-320.
[15] Xu K, Wang Y, Yang L, et al. Clouddet: Interactive visual analysis of anomalous performances in cloud computing systems[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26(1): 1107-1117.
[16] LI X, CHEN P, JING L, et al. SwissLog: Robust Anomaly Detection and Localization for Interleaved Unstructured Logs[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(4): 2762-2780.
[17] TULI S, CASALE G, JENNINGS N R. TranAD: Deep transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of the VLDB Endowment, 2022, 15(6): 1201-1214.
[18] He P, Zhu J, Zheng Z, et al. Drain: An online log parsing approach with fixed depth tree[C]//2017 IEEE International Conference on Web Services (ICWS). IEEE, 2017: 33-40.
[19] Du M, Li F. Spell: Streaming parsing of system event logs[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016: 859-864.
[20] Guo H, Yuan S, Wu X. Logbert: Log anomaly detection via bert[C]//2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021: 1-8.
[21] Zhang X, Xu Y, Lin Q, et al. Robust log-based anomaly detection on unstable log data[C]//Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2019: 807-817.
[22] Fu Y, Yan M, Xu Z, et al. An empirical study of the impact of log parsers on the performance of log-based anomaly detection[J]. Empirical Software Engineering, 2023, 28(1): 6.
[23] Xiao R, Li W, Lu J, et al. Contexlog: Non-parsing log anomaly detection with all information preservation and enhanced contextual representation[J]. IEEE Transactions on Network and Service Management, 2024, 21(4): 4750-4762.
[24] Han X, Yuan S, Trabelsi M. Loggpt: Log anomaly detection via gpt[C]//2023 IEEE International Conference on Big Data (BigData). IEEE, 2023: 1117-1122.
[25] Zhu J, He S, He P, et al. Loghub: A large collection of system log datasets for ai-driven log analytics[C]//2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2023: 355-366.
[26] Lee Y, Kim J, Kang P. LAnoBERT: System log anomaly detection based on bert masked language model[J]. Applied Soft Computing, 2023, 146: 110689.
[27] Guo H, Yang J, Liu J, et al. LogFormer: A pre-train and tuning pipeline for log anomaly detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(1): 135-143.
|