[1] 高会旺, 陈金玲, 陈静. 中国城市空气污染指数的区域分布特征[J]. 中国海洋大学学报, 2014, 44(10): 25-34.
Gao, H. W., Chen, J. L., Chen, J. Regional Distribution Characteristics of Air Pollution Index in Chinese Cities [J]. Journal of Ocean University of China, 2014, 44(10): 25-34.
[2] 苗艳青. 空气污染对人体健康的影响: 基于健康生产函数方法的研究[J]. 中国人口. 资源与环境, 2008, 18(5): 205-209.
Miao, Y. Q. The impact of air pollution on human health: A study based on the health production function method [J]. China Population, Resources and Environment, 2008, 18(5): 205-209.
[3] 王振波, 方创琳, 许光, 等. 2014 年中国城市 PM_ (2.5) 浓度的时空变化规律[J]. 地理学报, 2015, 70(11): 1720-1734.
Wang, Z. B., Fang, C. L., Xu, G., et al. Spatial and temporal variations of PM_(2.5) concentrations in Chinese cities in 2014 [J]. Acta Geographica Sinica, 2015, 70(11): 1720-1734.
[4] Loganathan N, Ibrahim Y. Forecasting international tourism demand in Malaysia using Box Jenkins Sarima application[J]. South Asian Journal of Tourism and Heritage, 2010, 3(2): 50-60.
[5] Kumar A, Goyal P. Forecasting of daily air quality index in Delhi[J]. Science of the Total Environment, 2011, 409(24): 5517-5523.
[6] Li X, Luo A, Li J, et al. Air pollutant concentration forecast based on support vector regression and quantum-behaved particle swarm optimization[J]. Environmental Modeling & Assessment, 2019, 24: 205-222.
[7] Ketu S. Spatial air quality index and air pollutant concentration prediction using linear regression based recursive feature elimination with random forest regression (RFERF): a case study in India[J]. Natural Hazards, 2022, 114(2): 2109-2138.
[8] Tsai Y T, Zeng Y R, Chang Y S. Air pollution forecasting using RNN with LSTM[C]//2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018: 1074-1079.
[9] Liu Y, Wu H, Wang J, et al. Non-stationary transformers: exploring the stationarity in time series forecasting[J]. Advances in Neural Information Processing Systems, 2022, 35: 9881-9893.
[10] Kim T Y, Cho S B. Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81.
[11] Du S, Li T, Yang Y, et al. Deep air quality forecasting using hybrid deep learning framework[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(6): 2412-2424.
[12] Wu Z, Wang Y, Zhang L. Msstn: Multi-scale spatial temporal network for air pollution prediction[C]//2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019: 1547-1556.
[13] Zhang J, Wang Z, Liu Y, et al. Temporal attention with domain-specific graph regularization for PM 2.5 forecasting[C]//2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). IEEE, 2020: 510-517.v
[14] Xu J, Wang S, Ying N, et al. Dynamic graph neural network with adaptive edge attributes for air quality prediction: A case study in China[J]. Heliyon, 2023, 9(7): e17746-e17746.
[15] Chen X, Hu Y, Dong F, et al. A multi-graph spatial-temporal attention network for air-quality prediction[J]. Process Safety and Environmental Protection, 2024, 181: 442-451.
[16] Zuo J, Li W, Baldo M, et al. Opportunistic air quality monitoring and forecasting with expandable graph neural networks[C]//Proceedings of the 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023: 1-4.
[17] Sui S, Han Q. Multi-view multi-task spatiotemporal graph convolutional network for air quality prediction[J]. Science of the Total Environment, 2023, 893: 164699.
[18] Hettige K H, Ji J, Xiang S, et al. Airphynet: harnessing physics-guided neural networks for air quality prediction[J]. arXiv preprint arXiv:2402.03784, 2024.
[19] Xia Y, Liang Y, Wen H, et al. Deciphering spatio-temporal graph forecasting: a causal lens and treatment[J]. Advances in Neural Information Processing Systems, 2023, 36: 37068-37088.
[20] Shao Z, Zhang Z, Wang F, et al. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022: 1567-1577.
[21] Luo Q, He S, Han X, et al. LSTTN: A long-short term transformer-based spatiotemporal neural network for traffic flow forecasting[J]. Knowledge-Based Systems, 2024, 293: 111637.
[22] Wu Z, Pan S, Long G, et al. Graph WaveNet for Deep Spatial-Temporal Graph Modeling[C]//The 28th International Joint Conference on Artificial Intelligence (IJCAI). International Joint Conferences on Artificial Intelligence Organization, 2019.
[23] Vu V H, Nguyen D L, Nguyen T H, et al. Self-supervised air quality estimation with graph neural network assistance and attention enhancement[J]. Neural Computing and Applications, 2024, 36(19): 11171-11193.
[24] Li P, Zhang T, Jin Y. A spatio-temporal graph convolutional network for air quality prediction[J]. Sustainability, 2023, 15(9): 7624.
[25] Wu Z, Pan S, Long G, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 753-763.
[26] Bai L, Yao L, Li C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[J]. Advances in Neural Information Processing Systems, 2020, 33: 17804-17815.
[27] Deng J, Chen X, Jiang R, et al. St-norm: spatial and temporal normalization for multi-variate time series forecasting[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 269-278.
[28] Sun W, Cheng R, Jiao Y, et al. Transformer network with decoupled spatial–temporal embedding for traffic flow forecasting[J]. Applied Intelligence, 2023, 53(24): 30148-30168.
[29] Liu A, Zhang Y. Spatial–temporal dynamic graph convolutional network with interactive learning for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7645-7660.
[30] Wang P, Feng L, Zhang W, et al. TWIST: An Efficient Spatial-Temporal Transformer With Temporal Window and Sparse Attention for Traffic Forecasting[J]. IEEE Internet of Things Journal, 2025.
|